7.如圖,已知AB是圓O的直徑,直線CD與圓O相切于點(diǎn)C,AC平分∠DAB,AD與圓O相交于點(diǎn)E
(1)求證:AD⊥CD
(2)若AE=3,CD=2,求OC的長.

分析 (1)連接BC.由直線CD與⊙O相切于點(diǎn)C,可得∠DCA=∠B.再利用角平分線的性質(zhì)可得:△ACD∽△ABC,可得∠ADC=∠ACB,即可證明.
(2)利用切割線定理得:DA.由(1)知:AD⊥CD,可得AC,又由(1)知:△ACD∽△ABC,$\frac{AD}{AC}=\frac{AC}{AB}$,JK DC.

解答 (1)證明:連接BC.
∵直線CD與⊙O相切于點(diǎn)C,
∴∠DCA=∠B.
∵AC平分∠DAB,
∴∠DAC=∠CAB.
故△ACD∽△ABC,∴∠ADC=∠ACB.
∵AB是⊙O的直徑,∴∠ACB=90°.
∴∠ADC=90°,即AD⊥CD.
(2)解:由切割線定理得:DA×DE=DC2,即DA×(DA-3)=4,
解得:DA=4.
由(1)知:AD⊥CD,∴AC2=AD2+CD2=20,
又由(1)知:△ACD∽△ABC,∴$\frac{AD}{AC}=\frac{AC}{AB}$,
∴AB=$\frac{A{C}^{2}}{AD}$=5.∴OC=$\frac{AB}{2}$=$\frac{5}{2}$.

點(diǎn)評 本題考查了圓的切線的性質(zhì)、切割線定理、相似三角形的判定與性質(zhì)定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題p:?x∈R,x2+x≤1的否定¬p為( 。
A.$?{x_0}∈R,x_0^2+{x_0}≥1$B.?x∈R,x2+x≥1
C.$?{x_0}∈R,x_0^2+{x_0}>1$D.?x∈R,x2+x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列四個函數(shù):①y=3-x;②y=$\frac{1}{x}$;③y=x2+2x-10;④y=$\left\{\begin{array}{l}-x{\;}^{\;}(x≤0)\\-\frac{1}{x}{\;}^{\;}(x>0)\end{array}$.其中定義域與值域相同的函數(shù)有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax3-$\frac{3}{2}$x2+1(x∈R),其中a>0.
(1)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若對?x∈[-1,$\frac{1}{2}$],不等式f(x)<a2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知等差數(shù)列{an}中,a1=$\frac{3}{2},d=-\frac{1}{2},{S_n}$=-15,求n和an;
(2)已知等比數(shù)列{an}中,q=2,an=96,Sn=189,求a1和n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an},其中a1=2,an-an-1=2n-1(n≥2,n∈N+),則{an}的通項(xiàng)公式an=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,D是AB的中點(diǎn),AB=2,CD=$\sqrt{7}$.
(Ⅰ)若BC=$\sqrt{5}$,求AC的值;
(Ⅱ)若∠A=$\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2$\sqrt{3}$sinωxcosωx-2sin2ωx+2(ω>0)圖象的一個對稱中心為P(-$\frac{π}{12}$,1).
(1)求ω的最小值;
(2)當(dāng)ω取最小值時,試用“五點(diǎn)法”作出y=f(x)的圖象.
(3)當(dāng)ω取最小值時,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間及對稱軸方程和對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知p:x<-2或x>10;q:1-m<x<1+m2;¬p是q的充分而不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案