11.化簡$\frac{si{n}^{2}35°-\frac{1}{2}}{cos10°cos80°}$=-1.

分析 把分式的分子利用二倍角的余弦降冪,再結(jié)合二倍角的正弦及三角函數(shù)的誘導(dǎo)公式化簡求值.

解答 解:$\frac{si{n}^{2}35°-\frac{1}{2}}{cos10°cos80°}$=$\frac{\frac{1-cos70°}{2}-\frac{1}{2}}{cos10°sin10°}$=$-\frac{cos70°}{2sin10°cos10°}=-\frac{sin20°}{sin20°}=-1$.
故答案為:-1.

點評 本題考查三角函數(shù)的化簡求值,考查倍角公式的應(yīng)用,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知ω=z+i(z∈C,i是虛數(shù)單位),且$\frac{z-2}{z+2}$為純虛數(shù),M=|ω+1|2+|ω-1|2,求M的最大值及取得最大值時ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.△ABC中,角A,B,C的對邊分別是a,b,c,已知b=c,a2=2b2(1-sinA),則A=( 。
A.$\frac{3π}{4}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,a,b,c分別為角A,B,C所對的邊,若a,b,c成等差數(shù)列,則角B的取值范圍為(  )
A.(0,$\frac{π}{4}$]B.(0,$\frac{π}{3}$]C.(0,$\frac{π}{2}$]D.($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2acos2x+bsinxcosx-$\frac{\sqrt{3}}{2}$,且f(0)=$\frac{\sqrt{3}}{2}$,f($\frac{π}{4}$)=$\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)求f(x)在[0,$\frac{π}{2}$]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從1~9這9個數(shù)字中任取5個數(shù)組成無重復(fù)數(shù)字的數(shù),且個位、百位、萬位上的數(shù)字必須是奇數(shù)的五位數(shù)的個數(shù)是1800.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知某縣嬰幼兒的身高y(cm)與年齡x(歲)的一組調(diào)查數(shù)據(jù)如下:
年齡x0.31.21.71.92.22.63.13.23.84.0
身高y637176798387919397100
求y關(guān)于x的一元線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知{an}是等比數(shù)列,前n項和為Sn(n∈N*),且$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$=$\frac{2}{{a}_{3}}$,S6=63.
(1)求{an}的通項公式;
(2)若對任意的n∈N*,bn是log2an和log2an+1的等差中項,求數(shù)列{(-1)nb${\;}_{n}^{2}$}的前2n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.關(guān)于x的方程x+lgx=3,x+10x=3的兩個根分別為α,β,則α+β的值為3.

查看答案和解析>>

同步練習(xí)冊答案