分析 利用兩個向量垂直的性質求得x,設向量$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為θ,則由cosθ=$\frac{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)}{|\overrightarrow{a}|•|\overrightarrow{a}+\overrightarrow|}$ 的值,求得θ的值.
解答 解:∵向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(x,-3),且$\overrightarrow{a}$⊥$\overrightarrow$,∴$\sqrt{3}$x-3=0,∴x=$\sqrt{3}$,
∴$\overrightarrow$=($\sqrt{3}$,-3),$\overrightarrow{a}$+$\overrightarrow$=(2$\sqrt{3}$,-2),設向量$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為θ,
則cosθ=$\frac{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)}{|\overrightarrow{a}|•|\overrightarrow{a}+\overrightarrow|}$=$\frac{6-2}{2•\sqrt{12+4}}$=$\frac{1}{2}$,∴θ=$\frac{π}{3}$,
故答案:$\frac{π}{3}$.
點評 本題主要考查兩個向量垂直的性質,兩個向量坐標形式的運算,兩個向量夾角公式的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x+$\frac{1}{x}$ | B. | y=tanx | C. | y=$\frac{2}{x}$ | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com