18.設向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(x,-3),且$\overrightarrow{a}$⊥$\overrightarrow$,則向量$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為$\frac{π}{3}$.

分析 利用兩個向量垂直的性質求得x,設向量$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為θ,則由cosθ=$\frac{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)}{|\overrightarrow{a}|•|\overrightarrow{a}+\overrightarrow|}$ 的值,求得θ的值.

解答 解:∵向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(x,-3),且$\overrightarrow{a}$⊥$\overrightarrow$,∴$\sqrt{3}$x-3=0,∴x=$\sqrt{3}$,
∴$\overrightarrow$=($\sqrt{3}$,-3),$\overrightarrow{a}$+$\overrightarrow$=(2$\sqrt{3}$,-2),設向量$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為θ,
則cosθ=$\frac{\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)}{|\overrightarrow{a}|•|\overrightarrow{a}+\overrightarrow|}$=$\frac{6-2}{2•\sqrt{12+4}}$=$\frac{1}{2}$,∴θ=$\frac{π}{3}$,
故答案:$\frac{π}{3}$.

點評 本題主要考查兩個向量垂直的性質,兩個向量坐標形式的運算,兩個向量夾角公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.若復數(shù)$\frac{a+6i}{3-i}$(a∈R,i為虛數(shù)單位)是純虛數(shù),則實數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.圓錐底面半徑為2,母線與底面成60°角,三棱錐S-ABC的頂點S是圓錐的頂點,側棱SA、SB、SC都是圓錐的母線,則三棱錐S-ABC體積的最大值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.曲線C1:$\left\{\begin{array}{l}{x=2cosθ}\\{y=bsinθ}\end{array}\right.$(θ∈[0,2π],θ為參數(shù),b>0)與曲線C2:$\left\{\begin{array}{l}{x=-1+tcosφ}\\{y=2+tsinφ}\end{array}\right.$(t是參數(shù),φ∈[0,π])恒有公共點,則b的取值范圍是{b|b≥$\frac{4\sqrt{3}}{3}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρsin2θ-4cosθ=0,直線l過點M(0,4)且斜率為-2.
(1)求曲線C的極坐標方程化為直角坐標方程,寫出直線l的標準參數(shù)方程;
(2)若直線l與曲線C交于A,B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.看函數(shù)f(x)在定義域內滿足條件:①f(x)+f(-x)=0;②f(x)-f(x+t)<0(其中t>0),則函數(shù)f(x)的解析式可以是( 。
A.y=x+$\frac{1}{x}$B.y=tanxC.y=$\frac{2}{x}$D.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.關于x的方程m=$\frac{4x}{{x}^{2}+4}$的解個數(shù)不可能是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若(1-3x)2016=a0+a1x+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知f(x)=$\sqrt{-{x}^{2}+10x-9}$,g(x)=[f(x)]2+f(x2)的定義域為[1,3].

查看答案和解析>>

同步練習冊答案