7.若(1-3x)2016=a0+a1x+…+a2016x2016(x∈R),則$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$的值為-1.

分析 在所給的式子中,令x=0,可得a0 =1.再令x=$\frac{1}{3}$,可得a0+$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$=0,由此求得要求式子的值.

解答 解:∵(1-3x)2016=a0+a1x+…+a2016x2016(x∈R),令x=0,可得a0 =1.
再令x=$\frac{1}{3}$,可得a0+$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$=0,
∴$\frac{{a}_{1}}{3}$+$\frac{{a}_{2}}{{3}^{2}}$+…+$\frac{{a}_{2016}}{{3}^{2016}}$=-1,
故答案為:-1.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過給二項(xiàng)式的x賦值,求展開式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.圓內(nèi)接四邊形ABCD中,AB=3,AD=5,BD=7,∠BDC=45°,求:
(1)∠A的大;
(2)BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(x,-3),且$\overrightarrow{a}$⊥$\overrightarrow$,則向量$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=|2x+1|+|x-$\frac{1}{2}$|(x∈R).
(1)關(guān)于x的不等式f(x)≥2a2-a恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)m,n,p,q為正實(shí)數(shù),且m+n=f(-$\frac{1}{2}$),求證:(mp+nq)2≤mp2+nq2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x∈[0,2π],且sinx=-$\frac{1}{2}$,則x=$\frac{11π}{6}$或$\frac{7π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{OA}$=(6,-2),$\overrightarrow{OB}$=(-1,2),若$\overrightarrow{OC}$⊥$\overrightarrow{OB}$,且$\overrightarrow{BC}$∥$\overrightarrow{OA}$.
(1)求$\overrightarrow{BC}$;
(2)求$\overrightarrow{BC}$與$\overrightarrow{OB}$的夾角θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求值:
(1)sin[2arcsin(-$\frac{3}{5}$)]
(2)tan($\frac{1}{2}$arccos$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若(1-2x)4=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4,則a1+a3=40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an},{bn}均為各項(xiàng)都不相等的數(shù)列,Sn為{an}的前n項(xiàng)和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn=$\frac{n}{2}$,求a4的值;
(2)若{an}是公比為q的等比數(shù)列,求證:存在實(shí)數(shù)λ,使得{bn+λ}為等比數(shù)列;
(3)若{an}的各項(xiàng)都不為零,{bn}是公差為d的等差數(shù)列,求證:a2,a3,…,an…成等差數(shù)列的充要條件是d=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案