7.已知x、y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+3y≤6\end{array}\right.$,若z=log2(2x+y+2)的最大值為( 。
A.8B.3C.2D.1

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,設(shè)m=2x+y,利用目標(biāo)函數(shù)的幾何意義,求m的最大值,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)進(jìn)行求解即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
設(shè)m=2x+y,則由m=2x+y得y=-2x+m,
平移直線y=-2x+m,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)C時(shí),直線y=-2x+m的截距最大,
此時(shí)m最大.
由$\left\{\begin{array}{l}{y=0}\\{2x+3y=6}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$,即C(3,0),
代入目標(biāo)函數(shù)m=2x+y得z=2×3+0=6.
即m=2x+y的最大值為6.
則z=log2(2x+y+2)的最大值為z=log2(6+2)=log28=3
故選:B

點(diǎn)評(píng) 本題主要考查線性規(guī)劃和對(duì)數(shù)的運(yùn)算性質(zhì),利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知兩圓錐的頂點(diǎn)是同一個(gè)球的球心,底面互相平行且都在該球面上.若兩圓錐底面半徑分別為r1=24,r2=15兩底面間的距離為27,則該球的表面積為2500π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a,b,c都是正數(shù),且abc=1,求證:a3+b3+c3≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-2,3),且法向量為$\overrightarrow{n}$=(4,-1)的直線(點(diǎn)法式)方程為4×(x+2)+(-1)×(y-3)=0,化簡得4x-y+11=0,類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)B(-2,1,3),且法向量為$\overrightarrow{m}$=(3,-2,4)的平面方程化簡后為3x-2y+4z-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的偶函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),對(duì)定義域內(nèi)的任意x,都有2f(x)+xf'(x)<2成立,則使得x2f(x)-4f(2)<x2-4成立的x的范圍為( 。
A.{x|x≠±2}B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為使政府部門與群眾的溝通日;吵鞘猩鐓^(qū)組織“網(wǎng)絡(luò)在線問政”活動(dòng).2015年,該社區(qū)每月通過問卷形式進(jìn)行一次網(wǎng)上問政;2016年初,社區(qū)隨機(jī)抽取了60名居民,對(duì)居民上網(wǎng)參政議政意愿進(jìn)行調(diào)查.已知上網(wǎng)參與問政次數(shù)與參與人數(shù)的頻數(shù)分布如表:
參與調(diào)查問卷次數(shù)[0,2)[2,4)[4,6)[6,8)[8,10)[10,12]
參與調(diào)查問卷人數(shù)814814106
(1)若將參與調(diào)查問卷不少于4次的居民稱為“積極上網(wǎng)參政居民”,請(qǐng)你根據(jù)頻數(shù)分布表,完成2×2列聯(lián)表,據(jù)此調(diào)查你是否有99%的把握認(rèn)為在此社區(qū)內(nèi)“上網(wǎng)參政議政與性別有關(guān)”?
合計(jì)
積極上網(wǎng)參政議政8
不積極上網(wǎng)參政議政
合計(jì)40
P(k2>k00.1000.0500.010
k02.7063.8416.635
(2)從被調(diào)查的人中按男女比例隨機(jī)抽取6人,再從選取的6人中選出2人參加政府聽證會(huì),求選出的2人恰為1男1女的概率.
附:k2=$\frac{{n{{(ac-bd)}^2}}}{(a+b)(a+c)(c+d)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)是定義在R上的偶函數(shù),且f(1-x)=-f(x),當(dāng)x∈[2,3)時(shí),f(x)=x,則當(dāng)x∈(-1,0]時(shí),f(x)的解析式為( 。
A.x+4B.x-2C.x+3D.-x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下面給出的命題中:
①已知函數(shù)f(a)=$\int_0^a{cosx}$dx,則f($\frac{π}{2}}$)=1;
②“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的必要不充分條件;
③已知隨機(jī)變量ξ服從正態(tài)分布 N(0,σ2),且 P(-2≤ξ≤0)=0.4,則 P(ξ>2)=0.2;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩圓恰有2條公切線.
其中真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)U=R,A={x|x<1},B={x|x>m}.
(1)若∁UA⊆B,求實(shí)數(shù)m的取值范圍;
(2)若∁UA?B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案