分析 解法1 分析法:分析使不等式成立的充分條件,經(jīng)過分析,使不等式成立的充分條件顯然成立,從而證得結(jié)論.
解法2 綜合法:利用重要不等式 a2d2+b2c2≥2abcd,把(ac+bd)2=a2c2+b2d2+2abcd 放大,即得要證的不等式.
解法3 作差法:把(a2+b2)(c2+d2)-(ac+bd)2 展開化簡(jiǎn)化成完全平方的形式判斷符號(hào),可得其值大于或等于0,從而證得不等式成立.
解答 證明:解法1 (分析法)要證(ac+bd)2≤(a2+b2)(c2+d2),(2分)
即證:a2c2+b2d2+2abcd≤a2c2+a2d2+b2c2+b2d2 ,(4分)
即證:2abcd≤a2d2+b2c2 ,(6分)
即證:0≤a2d2+b2c2-2abcd=(ad+bc)2,(8分)
上式明顯成立.(10分) 故(ac+bd)2≤(a2+b2)(c2+d2)(12分)
解法2 (綜合法)因?yàn)閍2d2+b2c2≥2abcd(重要不等式)(3分)
所以(ac+bd)2=a2c2+b2d2+2abcd(6分)≤a2c2+a2d2+b2c2+b2d2(9分)=(a2+b2)(c2+d2)(12分)
解法3 (作差法)因?yàn)椋╝2+b2)(c2+d2)-(ac+bd)2(2分)=(a2c2+a2d2+b2c2+b2d2)-(a2c2+b2d2+2abcd)(5分)
=b2c2+a2d2-2abcd(8分)=(b2c2-a2d2)2≥0(10分)
所以(ac+bd)2≤(a2+b2)(c2+d2). (12分)
點(diǎn)評(píng) 本題考查用分析法、綜合法、作差比較法證明不等式,式子的變形時(shí)解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | [1,3) | C. | [1,3] | D. | (1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M={3,2},N={(3,2)} | B. | M={3,2},N={2,3} | ||
C. | M={(x,y)|y=-x+1},N={y|y=1-x} | D. | M={1,2},N={(2,1)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com