分析 構(gòu)造函數(shù)f(x)=xlnx,求出導(dǎo)數(shù)和單調(diào)區(qū)間,可得極小值,且為最小值;g(x)=-x2+2x-1-$\frac{1}{e}$,配方求得最大值,比較即可得證,注意等號(hào)不成立.
解答 證明:由函數(shù)f(x)=xlnx,可得導(dǎo)數(shù)為
f′(x)=lnx+1,由f′(x)=0,可得x=$\frac{1}{e}$,
當(dāng)x>$\frac{1}{e}$時(shí),f′(x)>0,f(x)遞增;
當(dāng)0<x<$\frac{1}{e}$時(shí),f′(x)<0,f(x)遞減.
可得f(x)在x=$\frac{1}{e}$處取得極小值,且為最小值-$\frac{1}{e}$;
又g(x)=-x2+2x-1-$\frac{1}{e}$=-(x-1)2-$\frac{1}{e}$,
當(dāng)x=1時(shí),函數(shù)g(x)取得最大值-$\frac{1}{e}$.
由于最值的取得,不同時(shí)成立,
則xlnx>-x2+2x-1-$\frac{1}{e}$成立.
點(diǎn)評(píng) 本題考查不等式的證明,注意運(yùn)用構(gòu)造函數(shù)法,求得最值,比較最值,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y2=2x | B. | y2=3x | C. | y2=4x | D. | y2=6x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{16}$,0) | B. | (0,$\frac{1}{16}$) | C. | ($\frac{1}{2}$,0) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,$\sqrt{3}$) | B. | (1,$\sqrt{5}$) | C. | ($\sqrt{3}$,+∞) | D. | ($\sqrt{5}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com