15.設(shè)f(x)為定義在R上的可導(dǎo)函數(shù),e為自然對數(shù)的底數(shù).若f'(x)lnx>$\frac{f(x)}{x}$,則( 。
A.f(2)<f(e)ln2,2f(e)>f(e2B.f(2)<f(e)ln2,2f(e)<f(e2
C.f(2)>f(e)ln2,2f(e)<f(e2D.f(2)>f(e)ln2,2f(e)>f(e2

分析 構(gòu)造函數(shù)g(x),求出函數(shù)的單調(diào)性,從而求出函數(shù)值的大小即可.

解答 解:令g(x)=$\frac{f(x)}{lnx}$,
則g′(x)=$\frac{f′(x)lnx-f(x)•\frac{1}{x}}{{(lnx)}^{2}}$,
∵f'(x)lnx>$\frac{f(x)}{x}$,
∴g′(x)>0,
∴g(x)在R遞增,
∴g(2)<g(e)<g(e2),
∴f(2)<f(e)ln2,2f(e)<f(e2),
故選:B.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=Atan(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$),y=f(x)的部分圖象如圖,則f($\frac{π}{2}$)=( 。
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)a>0,函數(shù)f(x)=cosx(2asinx-cosx)+sin2x的最大值為2.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)△ABC三內(nèi)角A,B,C所對邊分別為a,b,c且$\frac{{a}^{2}+{c}^{2}-^{2}}{{a}^{2}+^{2}-{c}^{2}}$=$\frac{c}{2a-c}$,求f(x)在[B,$\frac{π}{2}}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式$\frac{2x-1}{x-2}$≥1的解集為{x|x>2或x≤-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1坐標(biāo)原點(diǎn)為點(diǎn)O,有頂點(diǎn)坐標(biāo)為(2,0),離心率e=$\frac{{\sqrt{3}}}{2}$,過橢圓右焦點(diǎn)傾斜角為30°的直線交橢圓與點(diǎn)A,B兩點(diǎn).
(1)求橢圓的方程.
(2)求三角形OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.極坐標(biāo)方程θ=$\frac{π}{6}$(ρ∈R)表示的曲線是一條(  )
A.射線B.直線
C.垂直于極軸的直線D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=cosx-lnx,實(shí)數(shù)a,b,c滿足f(a)f(b)f(c)<0(0<a<b<c<π),若實(shí)數(shù)x0是f(x)=0的根,那么下列不等式中不可能成立的是(  )
A.x0<cB.x0>cC.x0<bD.x0>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊分別是a,b,c,滿足2acosC+c=2b.
(1)求角A的大。
(2)若a=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.有某單位在2016年的招聘考試中100名競聘者的筆試成績,按成績分組為:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若該單位決定在第3,4,5組中用分層抽樣的方法抽取6名競聘者進(jìn)入A組面試,求第3,4,5組每組各抽取多少名競聘者進(jìn)入該組面試?
(3)在(2)的前提下,該單位決定在這6名競聘者中隨機(jī)抽取2名競聘者接受總經(jīng)理的面試,求第4組至少有一名競聘者被總經(jīng)理面試的概率.

查看答案和解析>>

同步練習(xí)冊答案