【題目】四棱錐P-ABCD中,底面ABCD為菱形,且,側(cè)面PAD是正三角形,其所在的平面垂直于底面ABCD,點GAD的中點.

1)求證:BGPAD;

2EBC的中點,在PC上求一點F,使得PGDEF.

【答案】1)證明見解析;(2FPC中點時滿足題意,具體見解析

【解析】

1)連結(jié)BD,證明BGAD,因為面PAD底面ABCD,且面PAD底面ABCD=AD,即可證明BG垂直于面PAD;

2)點E BC的中點,點FPC的中點,連接GCDE于點H,證明PGFH ,因為DEF,DEF,即可證明PGDEF.

證明:(1)連結(jié)BD,因為四邊形ABCD為菱形,且

所以三角形ABD為正三角形,又因為點GAD的中點,所以BGAD;

因為面PAD底面ABCD,且面PAD底面ABCD=AD,

平面,

所以BGPAD.

2)當點FPC的中點時,PGDEF,

連結(jié)GCDE于點H

因為E、G分別為菱形ABCD的邊BCAD的中點,所以四邊形DGEC為平行四邊形,

所以點HDE的中點,又點FPC的中點,

所以FH是三角形PGC的中位線,所以PGFH ,

因為DEF,DEF

所以PGDEF.

綜上:當點FPC的中點時,PGDEF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海南盛產(chǎn)各種名貴樹木,如紫檀、黃花梨等.在實際測量單根原木材體積時,可以檢量木材的實際長度(檢尺長)和小頭直徑(檢尺徑),再通過國家公布的原木材積表直接查詢得到,原木材積表的部分數(shù)據(jù)如下所示:

檢尺徑

檢尺長(

2.0

2.2

2.4

2.5

2.6

材積(

8

0.0130

0.0150

0.0160

0.0170

0.0180

10

0.0190

0.0220

0.0240

0.0250

0.0260

12

0.0270

0.0300

0.0330

0.0350

0.0370

14

0.0360

0.0400

0.0450

0.0470

0.0490

16

0.0470

0.0520

0.0580

0.0600

0.0630

18

0.0590

0.0650

0.0720

0.0760

0.0790

20

0.0720

0.0800

0.0880

0.0920

0.0970

22

0.0860

0.0960

0.1060

0.1110

0.1160

24

0.1020

0.1140

0.1250

0.1310

0.1370

若小李購買了兩根紫檀原木,一根檢尺長為,檢尺徑為,另一根檢尺長為,檢尺徑為,根據(jù)上表,可知兩根原木的材積之和為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差為,前n項和為,且滿足____________.(從①);②成等比數(shù)列;③,這三個條件中任選兩個補充到題干中的橫線位置,并根據(jù)你的選擇解決問題)

I)求;

(Ⅱ)若,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,AC的上頂點,過A的直線lC交于另一點B,與x軸交于點DO點為坐標原點.

1)若,求l的方程;

2)已知PAB的中點,y軸上是否存在定點Q,使得?若存在,求Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDE中,DEAB,ACBC,BC2AC2,AB2DE,且D點在平面ABC內(nèi)的正投影為AC的中點HDH1

1)證明:面BCE⊥面ABC

2)求BD與面CDE夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】單位正方體在空間直角坐標系中的位置如圖所示,動點,其中,設(shè)由,三點確定的平面截該正方體的截面為,那么(

A.對任意點,存在點使截面為三角形

B.對任意點,存在點使截面為正方形

C.對任意點,截面都為梯形

D.對任意點,存在點使得截面為矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數(shù)方程為為參數(shù)),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)過點,傾斜角為的直線l與曲線C相交于M,N兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù)為.

1)當時,證明:函數(shù)上單調(diào)遞增;

2)若,討論函數(shù)零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,中點,點上且平面,延長線上,,交,且

(1)證明:平面;

(2)設(shè)點在線段上,若二面角,求的長度.

查看答案和解析>>

同步練習(xí)冊答案