2.已知復(fù)數(shù)z=$\frac{2i}{1-i}$,$\overline{z}$為z的共扼復(fù)數(shù),則$\overline{z}$•z的值為(  )
A.-2B.0C.$\sqrt{2}$D.2

分析 先化簡(jiǎn)復(fù)數(shù)z,再寫出它的共軛復(fù)數(shù),從而計(jì)算$\overline{z}$•z的值.

解答 解:∵復(fù)數(shù)z=$\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}$=-1+i,
∴$\overline{z}$=-1-i,
∴$\overline{z}$•z=(-1-i)•(-1+i)=(-1)2-i2=2.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的化簡(jiǎn)與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.m變化時(shí),兩平行線3x-4y+m-1=0和3x一4y+m2=0之間距離的最小值等于$\frac{3}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知A(a,2),B(1,b)為平面直角坐標(biāo)系中第一象限的兩點(diǎn),C(4,-1),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OA}$與$\overrightarrow{OB}$在$\overrightarrow{OC}$方向上的投影相同,則2$\sqrt{a}$+$\sqrt$的最大值為(  )
A.$\sqrt{3}$B.3C.2$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合A={(x,y)|x2+y2=16,x∈Z,y∈Z},則集合A的子集個(gè)數(shù)為( 。
A.8B.32C.16D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow{a}$為單位向量,向量$\overrightarrow$的模為6,且$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{{a}^{2}}$+2,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在北京召開的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是$\frac{1}{25}$,則sin2θ-cos2θ的值等于(  )
A.1B.-$\frac{7}{25}$C.$\frac{7}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}滿足:a1=m(m為正整數(shù)),an+1=$\left\{\begin{array}{l}\frac{a_n}{2},當(dāng){a_n}為偶數(shù)時(shí)\\ 3{a_n}+1,當(dāng){a_n}為奇數(shù)時(shí)\end{array}$若a6=1,則m所有可能的取值的個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx
(Ⅰ)當(dāng)a=0時(shí),若函數(shù)f(x)在其圖象上任意一點(diǎn)A處的切線斜率為k,求k的最小值,并求此時(shí)的切線方程;
(Ⅱ)若函數(shù)f(x)的極大值點(diǎn)為x1,證明:x1lnx1-ax12>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知等差數(shù)列{an}的公差不為零,且a2+a3=a6,則$\frac{{{a_1}+{a_2}}}{{{a_3}+{a_4}+{a_5}}}$=$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案