7.當(dāng)x∈[-2,-1],不等式ax3-x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[-5,-3]B.(-∞,-$\frac{9}{8}$]C.(-∞,-2]D.[-4,-3]

分析 根據(jù)x的范圍,不等式可整理為a≤$\frac{1}{x}$-$\frac{4}{{x}^{2}}$-$\frac{3}{{x}^{3}}$,構(gòu)造函數(shù)f(x)=$\frac{1}{x}$-$\frac{4}{{x}^{2}}$-$\frac{3}{{x}^{3}}$,通過(guò)導(dǎo)函數(shù)得出函數(shù)的單調(diào)性,求出函數(shù)的最小值即可.

解答 解:x∈[-2,-1],ax3-x2+4x+3≥0,
∴ax3-x2+4x+3≥0可化為a≤$\frac{1}{x}$-$\frac{4}{{x}^{2}}$-$\frac{3}{{x}^{3}}$,
令f(x)=$\frac{1}{x}$-$\frac{4}{{x}^{2}}$-$\frac{3}{{x}^{3}}$,f'(x)=-$\frac{(x-9)(x+1)}{{x}^{4}}$,
當(dāng)-2≤x<-1時(shí),f′(x)<0,f(x)單調(diào)遞減,
∴f(x)≥f(-1)=-2,
∴a≤-2.
故選C.

點(diǎn)評(píng) 考查了對(duì)不等式的變形和對(duì)恒成立問(wèn)題的轉(zhuǎn)換,利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線l與兩條漸近線交于P、Q兩點(diǎn),如果△PQF是等邊三角形,則雙曲線的離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=|x|,g(x)=-|x-4|+m.
(1)解關(guān)于x的不等式g[f(x)]+3-m>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(2x)圖象的上方,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,短軸兩個(gè)端點(diǎn)為A,B,且四邊形F1AF2B是邊長(zhǎng)為2的正方形.
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上一點(diǎn),M($\frac{1}{2}$,0)為橢圓長(zhǎng)軸上一點(diǎn),求|PM|的最大值與最小值;
(3)設(shè)Q是橢圓外C的動(dòng)點(diǎn),滿足|$\overrightarrow{{F_1}Q}$|=4,點(diǎn)R是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足$\overrightarrow{RT}$•$\overrightarrow{T{F_2}}$=0,|$\overrightarrow{T{F_2}}$|≠0,求點(diǎn)T的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x)-2,當(dāng)x∈(0,2]時(shí),f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-6,x∈(0,1]}\\{-{2}^{x-1}-5,x∈(1,2]}\end{array}\right.$,若x∈(-6,-4]時(shí),關(guān)于x的方程af(x)-a2+2=0(a>0)有解,則實(shí)數(shù)a的取值范圍是0<a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線G:$\frac{x^2}{a^2}-{y^2}$=1(a>0)的左頂點(diǎn)為A,若雙曲線G的一條漸近線與直線AM平行,則實(shí)數(shù)a的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過(guò)點(diǎn)Q($\sqrt{2}$,1),右焦點(diǎn)F($\sqrt{2}$,0),
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=k(x-1)分別交x軸,y軸于C,D兩點(diǎn),且與橢圓C交于M,N兩點(diǎn),若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值;
(Ⅲ)自橢圓C上異于其頂點(diǎn)的任意一點(diǎn)P,作圓O:x2+y2=2的兩條切線切點(diǎn)分別為P1,P2,若直線P1P2在x軸,y軸上的截距分別為m,n,證明:$\frac{1}{m^2}+\frac{2}{n^2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.命題p:?x<0,x2<2x,則命題¬p為( 。
A.?x0<0,x02<2${\;}^{{x}_{0}}$B.?x0≥0,x02≥2${\;}^{{x}_{0}}$
C.?x0<0,x02≥2${\;}^{{x}_{0}}$D.?x0≥0,x02<2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.把“正整數(shù)N除以正整數(shù)m后的余數(shù)為n”記為N≡n(modm),例如8≡2(mod3).執(zhí)行如圖的該程序框圖后,輸出的i值為( 。
A.14B.17C.22D.23

查看答案和解析>>

同步練習(xí)冊(cè)答案