A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | 3 |
分析 根據(jù)$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}$=$\overrightarrow 0$得出$\overrightarrow{OB}$=$\overrightarrow{CA}$,判斷四邊形OBAC是平行四邊形,
結(jié)合$|{\overrightarrow{OA}}|=|{\overrightarrow{AB}}$|得到四邊形OBAC是邊長(zhǎng)為2的菱形且∠ABO=∠AC0=60°,
再利用向量投影的定義即可算出答案.
解答 解:∵$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{AC}$=$\overrightarrow 0$,
∴$\overrightarrow{OA}$+$\overrightarrow{AB}$=-$\overrightarrow{AC}$,
即$\overrightarrow{OB}$=$\overrightarrow{CA}$,
∴四邊形OBAC是平行四邊形,如圖所示;
又∵△ABC的外接圓的圓心為O,半徑為2,
∴|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=2,
又$|{\overrightarrow{OA}}|=|{\overrightarrow{AB}}$|,
∴四邊形OBAC是邊長(zhǎng)為2的菱形,且∠ABO=∠ACO=60°,
∴∠ACB=$\frac{1}{2}$∠ACO=30°,
|$\overrightarrow{CB}$|=$\sqrt{{2}^{2}{+2}^{2}-2×2×2×cos120°}$=2$\sqrt{3}$;
∴向量$\overrightarrow{CB}$在$\overrightarrow{CA}$方向上的投影為:
|$\overrightarrow{CB}$|cos30°=2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=3.
故選:D.
點(diǎn)評(píng) 本題考查了三角形外接圓的向量表示以及求向量的投影問(wèn)題,著重考查了向量的加法法則、向量數(shù)量積的運(yùn)算性質(zhì)和向量在幾何中的應(yīng)用問(wèn)題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2n-1 | B. | 2n | C. | 2n+1 | D. | 2n+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 梯形 | B. | 矩形 | C. | 菱形 | D. | 正方形 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com