2.如圖,在三棱錐D-ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC=$\sqrt{2}$a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN=$\frac{3}{8}$CA,求證:MN∥平面DEF.

分析 (1)由已知可求面積S△BCD的值,利用勾股定理可求AB⊥BC,進(jìn)而可求AB⊥平面BCD,即可計算得解三棱錐VD-ABC=VA-BCD的值.
(2)取AC的中點H,要證明AC⊥平面DEF,可先證DE⊥AC,再證明EF⊥AC即可.
(3)連接CM,設(shè)CM∩DE=O,連接OF,可求CO=$\frac{2}{3}$CM,利用線面平行的判定定理即可證明.

解答 解:(1)∵△BCD是正三角形,且AB=BC=a,
∴S△BCD=$\frac{\sqrt{3}}{4}{a}^{2}$.
∵AC=$\sqrt{2}$a,∴AC2=AB2+BC2,∴AB⊥BC,
又∵平面ABC⊥平面BCD,且交線為BC,AB?平面ABC,
∴AB⊥平面BCD,
∴VD-ABC=VA-BCD=$\frac{1}{3}×\frac{\sqrt{3}}{4}{a}^{2}•a$=$\frac{\sqrt{3}}{12}{a}^{3}$…4分
(2)證明:取AC的中點H,∵AB=BC,∴BH⊥AC.
∵AF=3FC,∴F為CH的中點.
∵E為BC的中點,∴EF∥BH.則EF⊥AC.
∵△BCD是正三角形,∴DE⊥BC.
∵AB⊥平面BCD,∴AB⊥DE.
∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.
∵DE∩EF=E,∴AC⊥平面DEF.…8分
(3)當(dāng)CN=$\frac{3}{8}$CA時,連接CM,設(shè)CM∩DE=O,連接OF,
∵O為△BCD的垂心,∴CO=$\frac{2}{3}$CM,
當(dāng)CF=$\frac{2}{3}$CN時,MN∥OF,OF?平面DEF,MN?平面DEF,
∴MN∥平面DEF.…12分

點評 本題主要考查了直線與平面垂直的判定,棱錐的體積的求法,直線與平面平行的判定,考查了空間想象能力和推理論證能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>0)的一個焦點為F(-1,0),左右頂點分別為A,B,經(jīng)過點F的直線l與橢圓M交于C,D兩點.
(Ⅰ)求橢圓方程;
(Ⅱ)記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,四棱錐S-ABCD的底面ABCD為等腰梯形,CD∥AB,AC⊥BD,垂足為O,側(cè)面SAD⊥底面ABCD,且∠ADS=$\frac{π}{2}$,AB=8,AD=$\sqrt{34}$,SD=$\sqrt{30}$,M為BS中點.
(1)求證BS⊥平面AMC;
(2)求平面SDC與平面AMC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知F1、F2為橢圓C:$\frac{{x}^{2}}{4}$+y2=1的左、右焦點,點P在橢圓C上,且|PF1|-|PF2|=2,則cos∠F1PF2=( 。
A.$\frac{3}{4}$B.-$\frac{1}{3}$C.-$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.現(xiàn)有2門不同的考試要安排在5天之內(nèi)進(jìn)行,每天最多進(jìn)行一門考試,且不能連續(xù)兩天有考試,那么不同的考試安排方案有(  )種.
A.6種B.16種C.12種D.20種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列命題中正確的個數(shù)是( 。
①有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱;
②若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α;
③如果直線a,b和平面α滿足a∥α,b∥α,那么a∥b;
④如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,則l⊥γ
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}中,a3=8,a8=3,則該數(shù)列的前10項和為( 。
A.55B.45C.35D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=sinx-2cosx,當(dāng)x=α?xí)rf(x)取得最大值,則cosα=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)i是虛數(shù)單位,若復(fù)數(shù)a+$\frac{15}{3-4i}$(a∈R)是純虛數(shù),則a的值為$-\frac{9}{5}$.

查看答案和解析>>

同步練習(xí)冊答案