14.已知等差數(shù)列{an}中,a3=8,a8=3,則該數(shù)列的前10項和為( 。
A.55B.45C.35D.25

分析 利用等差數(shù)列的通項公式的性質(zhì)及其求和公式即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:a1+a10=a3+a8,
則該數(shù)列的前10項和=$\frac{10({a}_{1}+{a}_{10})}{2}$=5×(8+3)=55.
故選:A.

點評 本題考查了等差數(shù)列的通項公式求和公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知向量$\overrightarrow{a}$=(2,k),$\overrightarrow$=(1,1),滿足$\overrightarrow$⊥($\overrightarrow{a}$-3$\overrightarrow$).
(Ⅰ)求k的值;
(Ⅱ)求向量$\overrightarrow{a}$與向量$\overrightarrow$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,對角線AC與BD相交于點O,PA⊥平面ABCD,M是PD的中點.
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱錐D-ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC=$\sqrt{2}$a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點,N在棱AC上,且CN=$\frac{3}{8}$CA,求證:MN∥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)是二次函數(shù),不等式f(x)<0的解集為(0,4),且在區(qū)間[-1,4]上的最大值為10.
(1)求f(x)的解析式;
(2)解關(guān)于x的不等式:$\frac{2{x}^{2}+(m-8)x-{m}^{2}}{f(x)}$>1(m>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項和為Sn,且2Sn=an+1-2n+1+1(n∈N*),a1=1.
(1)求證:數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$+1}為等比數(shù)列,并求an;
(2)設(shè)數(shù)列{bn}滿足bn(3n-an)=$\frac{n+2}{n(n+1)}$,數(shù)列{bn}的前n項和為Tn,求證;Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義域為R的偶函數(shù),當(dāng)x≤0時,f(x)=(x+2)2ex-1,那么函數(shù)f(x)的極值點的個數(shù)是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知中心在原點的雙曲線的焦點坐標(biāo)是(0,5),且過點(0,3)則其標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=11C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+1)x2+ax-$\frac{1}{2}$a2+36(a∈R).
(1)若f(x)在R上單調(diào)遞增,求a的值;
(2)當(dāng)a>1時,f(x)的極小值大于0,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案