17.現(xiàn)有2門不同的考試要安排在5天之內(nèi)進(jìn)行,每天最多進(jìn)行一門考試,且不能連續(xù)兩天有考試,那么不同的考試安排方案有(  )種.
A.6種B.16種C.12種D.20種

分析 若第一門安排在開頭或結(jié)尾,則第二門有3種安排方法.若第一門安排在中間的3天中,則第二門有2種安排方法,根據(jù)分步計(jì)數(shù)原理分別求出安排方案種數(shù),相加即得所求.

解答 解:若第一門安排在開頭或結(jié)尾,則第二門有3種安排方法,這時(shí),共有C21×3=6種方法.
若第一門安排在中間的3天中,則第二門有2種安排方法,這時(shí),共有3×2=6種方法.
綜上可得,所有的不同的考試安排方案種數(shù)有 6+6=12種,
故選C.

點(diǎn)評 本題考查排列、組合及簡單計(jì)數(shù)問題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若某程序框圖如圖所示,當(dāng)輸入100時(shí),則該程序運(yùn)行后輸出的結(jié)果是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z=$\frac{2}{3+i}$的共軛復(fù)數(shù)$\overline{z}$為(  )
A.3-iB.$\frac{1}{3}$-iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,對角線AC與BD相交于點(diǎn)O,PA⊥平面ABCD,M是PD的中點(diǎn).
(1)求證:OM∥平面PAB;
(2)求證:平面PBD⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,拋物線上存在一點(diǎn)P到其焦點(diǎn)的距離為$\frac{3}{2}$,且點(diǎn)P在圓x2+y2=$\frac{9}{4}$上.
(1)求拋物線E的方程;
(2)直線l過拋物線E的焦點(diǎn)F,交拋物線E于A、B兩點(diǎn),若$\overrightarrow{AF}$=3$\overrightarrow{BF}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱錐D-ABC中,已知△BCD是正三角形,平面ABC⊥平面BCD,AB=BC=a,AC=$\sqrt{2}$a,E為BC的中點(diǎn),F(xiàn)在棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的體積;
(2)求證:AC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN=$\frac{3}{8}$CA,求證:MN∥平面DEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)是二次函數(shù),不等式f(x)<0的解集為(0,4),且在區(qū)間[-1,4]上的最大值為10.
(1)求f(x)的解析式;
(2)解關(guān)于x的不等式:$\frac{2{x}^{2}+(m-8)x-{m}^{2}}{f(x)}$>1(m>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≤0時(shí),f(x)=(x+2)2ex-1,那么函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求證:一元二次方程ax2+bx+c=0(a≠0)至多有兩個(gè)不相等的實(shí)根.

查看答案和解析>>

同步練習(xí)冊答案