分析 (1)延長AC與ED交于G點,連接BG;
(2)利用三角形的中位線定理、平行四邊形的判定和性質(zhì)定理、線面平行的判定定理即可證明;
(3)利用線面、面面垂直的判定和性質(zhì)定理即可證明.
解答 (1)解:如圖所示,BG′為平面ABC與BDE的交線;做法:延長AC與ED交于G點,連接BG.
(2)證明:如圖所示,取AB中點G,連CG、FG.
∵EF=FB,AG=GB,
∴FG$\stackrel{∥}{=}$$\frac{1}{2}$EA.
又DC$\stackrel{∥}{=}$$\frac{1}{2}$EA,
∴FG$\stackrel{∥}{=}$DC.
∴四邊形CDFG為平行四邊形,∴DF∥CG.
∵DF?平面ABC,CG?平面ABC,
∴DF∥平面ABC.
(2)證明:∵EA⊥平面ABC,
∴AE⊥CG.
又△ABC是正三角形,G是AB的中點,
∴CG⊥AB.
∴CG⊥平面AEB.
又∵DF∥CG,
∴DF⊥平面AEB.
∴平面AEB⊥平面BDE.
∵AE=AB,EF=FB,
∴AF⊥BE.
∴AF⊥平面BED,
∴AF⊥BD.
點評 熟練掌握三角形的中位線定理、平行四邊形的判定和性質(zhì)定理、線面平行的判定定理與線面、面面垂直的判定和性質(zhì)定理及二面角的求法是解題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
時間t | 50 | 110 | 250 |
種植成本Q | 150 | 108 | 150 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{5}{6}π$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}+\frac{i}{2}$ | B. | $\frac{3}{2}-\frac{i}{2}$ | C. | $-\frac{3}{2}-\frac{i}{2}$ | D. | $-\frac{3}{2}+\frac{i}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com