7.定義A-B={x|x∈A且x∉B},若A={2,4,6,8,10},B={1,4,8},則A-B={2,6,10}.

分析 根據(jù)條件和A-B={x|x∈A且x∉B},直接求出A-B即可.

解答 解:∵A-B={x|x∈A且x∉B},A={2,4,6,8,10},B={1,4,8},
∴A-B={2,6,10},
故答案為:{2,6,10}.

點(diǎn)評(píng) 本題以集合為背景知識(shí),考查集合新定義的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點(diǎn)分別為A1,A2,P,Q,T為橢圓異于A1,A2的點(diǎn),若橢圓C的焦距為2$\sqrt{2}$,且橢圓過(guò)點(diǎn)M($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{7}}{2}$).
(1)求橢圓C的方程;
(2)若△OPQ的面積為$\sqrt{2}$,A1R∥OP,求證:OQ∥A2R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)y=f(x)的周期為2,當(dāng)x∈[-1,1]時(shí) f(x)=x2,那么函數(shù)y=f(x)的圖象與函數(shù)y=|log5x|的圖象的交點(diǎn)共有(  )
A.5個(gè)B.6個(gè)C.8個(gè)D.10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知0<α<π,tanα=-2,則2sin2α-sinαcosα+cos2α的值為( 。
A.$\frac{1}{2}$B.$\frac{11}{5}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)(x∈R,且x>0),對(duì)于定義域內(nèi)任意x、y恒有f(xy)=f(x)+f(y),并且x>1時(shí),f(x)>0恒成立.
(1)求f(1);
(2)若x∈[1,+∞)時(shí),不等式f($\frac{{{x^2}+2x+a}}{x}$)>f(1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若曲線y=h(x)在點(diǎn)P(a,h(a))處切線方程為2x+y+1=0,則(  )
A.h′(a)<0B.h′(a)>0C.h′(a)=0D.h′(a)的符號(hào)不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知橢圓的焦點(diǎn)是F1(0,-$\sqrt{3}$),F(xiàn)2(0,$\sqrt{3}$),離心率e=$\frac{{\sqrt{3}}}{2}$,若點(diǎn)P在橢圓上,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=$\frac{2}{3}$,則∠F1PF2的大小為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合A={2,3},B={2,4,5},則集合A∪B的真子集的個(gè)數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)=x2+ax2015+bx2017-8,且f(-$\sqrt{2}$)=10,則f($\sqrt{2}$)=(  )
A.-10B.-12C.-22D.-26

查看答案和解析>>

同步練習(xí)冊(cè)答案