設(shè)全集I=R,集合A={x|x2-2x+m<0,m∈R},集合B={a∈R|ax2+4ax-4<0,對(duì)任意實(shí)數(shù)x恒成立},(∁RA)∩B≠∅,求實(shí)數(shù)m的范圍.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:
分析:求出集合B,先推出(∁RA)∩B=∅時(shí)m的取值范圍,再求(∁RA)∩B≠∅時(shí)m的取值范圍.
解答: 解:∵ax2+4ax-4<0,對(duì)任意實(shí)數(shù)x恒成立,
a<0
(4a)2-4a(-4)<0
或a=0,
解得,-1<a≤0.
則集合B=(-1,0].
若(∁RA)∩B=∅,
則B⊆A,
令f(x)=x2-2x+m,
則f(-1)≤0且f(0)<0;
即3+m≤0且m<0
解得,m≤-3.
則(∁RA)∩B≠∅時(shí),
實(shí)數(shù)m的范圍為:m>-3.
點(diǎn)評(píng):本題考查了恒成立問題的解法,及命題否定的應(yīng)用,同時(shí)考查了集合之間的包含關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-2<x≤m-3},B={x|3n+4<x≤2},若A=B,求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-a2x(a>0)
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,求f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[0,1]上的最小值;
(Ⅲ)設(shè)g(x)=
1
2
x2,若函數(shù)F(x)=f(x)-g(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和Sn,且bn=
Sn
n
(n∈N*),求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)校高三年級(jí)有學(xué)生1000名,經(jīng)調(diào)查研究,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱為A類同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為B類同學(xué)),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該年級(jí)的學(xué)生中共抽查100名學(xué)生同學(xué),如果以身高達(dá)165cm作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生,得到以下列聯(lián)表:
體育鍛煉與身高達(dá)標(biāo)2×2列聯(lián)表
身高達(dá)標(biāo)身高不達(dá)標(biāo)總計(jì)
積極參加體育鍛煉40
不積極參加體育鍛煉15
總計(jì)100
(1)完成上表;
(2)能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系(值精確到)?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,參考數(shù)據(jù):
P(K2>k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(-
x
2
)+sin(π-
x
2
),x∈R  求f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的方程為x2=2py,設(shè)點(diǎn)M(x0,1)(x0>0)在拋物線C上,且它到拋物線C的準(zhǔn)線距離為
5
4
;
(1)求拋物線C的方程;
(2)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別交拋物線C于A(x1,y1),B(x2,y2)兩點(diǎn)(M、A、B三點(diǎn)互不相同),求當(dāng)∠MAB為鈍角時(shí),點(diǎn)A的縱坐標(biāo)y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=kx-k-1,k∈R與圓x2+y2+2ax+2y+2a2=0總有公共點(diǎn),則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合S={x|x≤-1或x≥2},P={x|a≤x≤a+3},若S∪P=R,則實(shí)數(shù)a的取值集合為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案