分析 由已知條件,先求出公比,再根據(jù)前n項和公式計算即可.
解答 解:設(shè)公比為q,由an=$\frac{a_{n-1}+a_{n-2}}{2}$,
∴2an=$\frac{{a}_{n}}{q}$+$\frac{{a}_{n}}{{q}^{2}}$,
∴2=$\frac{1}{q}$+$\frac{1}{{q}^{2}}$,
解得q=1或q=-$\frac{1}{2}$,
當(dāng)q=1時,a1=1,an=1,Sn=n,
當(dāng)q=-$\frac{1}{2}$,a1=1,Sn=$\frac{1-(-\frac{1}{2})^{n}}{1-(-\frac{1}{2})}$=$\frac{2}{3}$-$\frac{2}{3}$×($-\frac{1}{2}$)n,
故答案為:n或$\frac{2}{3}$-$\frac{2}{3}$×($-\frac{1}{2}$)n,
點評 本題考查了等比數(shù)列的定義和等比數(shù)列的前n項和公式,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -$\frac{1}{2}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=-\frac{1}{x}$ | B. | y=3-x-3x | C. | $y=ln({x+\sqrt{1+{x^2}}})$ | D. | $y=\frac{{{3^x}+1}}{{{3^x}-1}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com