分析 (Ⅰ)利用垂直平分線的性質(zhì)可得|QA|=|QP|,由|QB|+|QP|=4,可得|QB|+|QA|=4,利用橢圓的定義可得點(diǎn)Q的軌跡是一個(gè)橢圓;
(Ⅱ)設(shè)l:y=kx+m代入橢圓、拋物線的方程,利用判別式等于0,A與P關(guān)于直線l對稱,即可求點(diǎn)P的坐標(biāo).
解答 解:(Ⅰ)由條件知:|QA|=|QP|,
∵|QB|+|QP|=4,
∴|QB|+|QA|=4,
∵|AB|=2<4,
所以點(diǎn)Q的軌跡是以B,A為焦點(diǎn)的橢圓,
∵2a=4,2c=2,∴b2=3,
∴曲線E的方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(Ⅱ)由題意,設(shè)l:y=kx+m①,代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1得(4k2+3)x2+8kmx+4(m2-3)=0,
∴△1=(8km)-4(4k2+3)×4(m2-3)=0,
∴4k2-m2+3=0②
把①代入:y=-$\frac{1}{32}$x2,得:$\frac{1}{32}$x2+kx+m=0,
由△2=${k}^{2}-4×\frac{1}{32}×m$=0,得m=8k2③>
由②③解得k=±$\frac{1}{2}$,m=2.
設(shè)P(x0,y0),則x0<0,y0>0
∵A與P關(guān)于直線l對稱,kAP<0,
∴k>0,∴k=$\frac{1}{2}$,
∴l(xiāng):y=$\frac{1}{2}$x+2,則$\left\{\begin{array}{l}{\frac{{y}_{0}}{2}=\frac{1}{2}×\frac{{x}_{0}+1}{2}+2}\\{\frac{{y}_{0}}{{x}_{0}-1}×\frac{1}{2}=-1}\end{array}\right.$,∴x0=-1,y0=4,
經(jīng)檢驗(yàn)P(-1,4)在圓C上.
故所求點(diǎn)P的坐標(biāo)為P(-1,4).
點(diǎn)評 本題綜合考查了圓與橢圓的定義及其標(biāo)準(zhǔn)方程、線段的垂直平分線、直線與橢圓、拋物線相切等基礎(chǔ)知識(shí)與基本技能,考查了數(shù)形結(jié)合的能力、推理能力、計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
合格品數(shù) | 次品數(shù) | 總數(shù) | |
第一臺(tái)加工數(shù) | 45 | 10 | 55 |
第二臺(tái)加工數(shù) | 40 | 5 | 45 |
總計(jì) | 85 | 15 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1002×2015)2 | B. | (1008×2015)2 | C. | (2014×2015)2 | D. | (2016×2015)2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com