化簡:sin(x-
π
3
)-cos(x+
π
6
)+
3
cosx=
 
考點:兩角和與差的余弦函數(shù),兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由兩角和與差的余弦函數(shù)、正弦函數(shù)公式展開即可化簡.
解答: 解:sin(x-
π
3
)-cos(x+
π
6
)+
3
cosx=
1
2
sinx-
3
2
cosx-(
3
2
cosx-
1
2
sinx)+
3
cosx=sinx
故答案為:sinx.
點評:本題主要考查了兩角和與差的余弦函數(shù),兩角和與差的正弦函數(shù)公式的應(yīng)用,屬于基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知關(guān)于方程ax2-ax+a-3=0 
(1)若方程有兩個實根,求a的范圍;
 (2)在(1)的前提下任取一實數(shù)a,方程有兩正根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,若f(x+1)與f(x-1)都是奇函數(shù),則f(x+3)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在四面體A-BCD中,若截面PQMN是正方形,則在下列命題中錯誤的為( 。
A、AC⊥BD
B、AC∥截面PQMN
C、AC=BD
D、BD∥截面PQMN

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|log 
1
3
x|的定義域為[a,b],值域為[0,t],用含t的表達式表示b-a的最大值為M(t),最小值為N(t),若設(shè)g(t)=M(t)-N(t).則當1≤t≤2時,g(t)•[g(t)+1]的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知方程x2+x+p=0(p∈R)的兩個根是x1,x2,若|x1|+|x2|=3,求p的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓
x2
a2
+y2=1(a為常數(shù)且a>1),向量
m
=(l,t)(t>0),經(jīng)過A(-a,0),以
m
為方向向量的直線交橢圓于點B,直線BO交橢圓于點C.
(1)用t表示△ABC的面積S(t);
(2)若t∈[
1
2
,1],求S(t)最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

斜率為1的直線與橢圓x2+
y2
4
=1交于A,B兩點,O為坐標原點,則△AOB的面積最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=2x2的準線方程是( 。
A、x=
1
2
B、y=
1
8
C、y=-
1
2
D、y=-
1
8

查看答案和解析>>

同步練習冊答案