1.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某多面體的三視圖,則該多面體的體積為( 。
A.48B.32C.16D.$\frac{32}{3}$

分析 由三視圖和正方體可得該幾何體一個(gè)三棱錐,由三視圖求出幾何元素的長(zhǎng)度,由錐體體積公式求出幾何體的體積、

解答 解:根據(jù)三視圖可知幾何體是一個(gè)三棱錐A-BCD,
三棱錐的外面是以4為棱長(zhǎng)的正方體,
∴幾何體的體積V=$\frac{1}{3}×\frac{1}{2}×4×4×4$=$\frac{32}{3}$
故選:D.

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積,借助于正方體復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x3-3x.
(Ⅰ)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)求函數(shù)f(x)在[-1,m](m>-1)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某幾何體的三視圖如圖所示,則該幾何體的體積與其外接球的體積之比為( 。
A.1:3πB.$\sqrt{3}:π$C.$1:3\sqrt{3}π$D.$1:\sqrt{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)F1,F(xiàn)2分別為雙曲線x2-$\frac{{y}^{2}}{9}$=1的左右焦點(diǎn),若點(diǎn)P在雙曲線上,且∠F1PF2=90°,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=( 。
A.$\sqrt{10}$B.2$\sqrt{10}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若函數(shù)f(x)=x3+ax2+bx(a,b∈R)的圖象與x軸相切于一點(diǎn)A(m,0)(m≠0),且f(x)的極大值為$\frac{1}{2}$,則m的值為(  )
A.$-\frac{2}{3}$B.$-\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一個(gè)幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( 。
A.B.C.$\frac{8\sqrt{2}π}{3}$D.$\frac{4\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.A、B、O是拋物線E:y2=2px(p>0)上不同三點(diǎn),其中O是坐標(biāo)原點(diǎn),$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,直線AB交x軸于C點(diǎn),D是線段OC的中點(diǎn),以E上一點(diǎn)M為圓心、以|MD|為半徑的圓被y軸截得的弦長(zhǎng)為d,下列結(jié)論正確的是( 。
A.d>|OC|>2pB.d<|OC|<2pC.d=|OC|=2pD.d<|OC|=2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{e}{x}$-lnx,g(x)=ex-1+a-lnx,其中e=2.71828…,a∈R.
(Ⅰ)證明:x=e是函數(shù)f(x)的唯一零點(diǎn);
(Ⅱ)當(dāng)a≥2且x≥1時(shí),試比較|f(x)|和|g(x)|的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,直線y=-3與拋物線交于點(diǎn)M,|MF|=5,則拋物線的標(biāo)準(zhǔn)方程是( 。
A.y2=2xB.y2=18xC.y2=xD.y2=2x或y2=18x

查看答案和解析>>

同步練習(xí)冊(cè)答案