12.某幾何體的三視圖如圖所示,則該幾何體的體積與其外接球的體積之比為( 。
A.1:3πB.$\sqrt{3}:π$C.$1:3\sqrt{3}π$D.$1:\sqrt{3}π$

分析 由三視圖知該幾何體是一個三棱柱,由三視圖求出幾何元素的長度,根據(jù)對應(yīng)的正方體求出外接球的半徑,由柱體、球體的體積公式求出該幾何體的體積與其外接球的體積之比.

解答 解根據(jù)三視圖可知幾何體是一個三棱柱A′B′D′-ABD,如圖:
底面是一個等腰直角三角形,兩條直角邊分別是2、高為2,
∴幾何體的體積V=sh=$\frac{1}{2}×2×2×2$=4,
由圖得,三棱柱A′B′D′-ABD與正方體A′B′C′D′-ABCD的外接球相同,且正方體的棱長為2,
∴外接球的半徑R=$\frac{\sqrt{3×{2}^{2}}}{2}$=$\sqrt{3}$,
則外接球的體積V′=$\frac{4}{3}π{R}^{3}$=$4\sqrt{3}π$,
∴該幾何體的體積與其外接球的體積之比為$\frac{V}{V′}$=$\frac{1}{\sqrt{3}π}$,
故選:D.

點評 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知(3+x)10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,則a8=180.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx,g(x)=x-2.
(1)設(shè)h(x)=f(x)-g(x),求h(x)的單調(diào)區(qū)間;
(2)設(shè)m∈Z,當(dāng)x>1時,不等式m•g(x+1)-x•f(x)<x,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)拋物線y2=8x的焦點為F,過點F作直線l與拋物線分別交于A,B兩點,若點M滿足$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),過M作y軸的垂線與拋物線交于點P,若|PF|=4,則M點的橫坐標(biāo)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.P為曲線C:x2=2py(p>0)上任意一點,O為坐標(biāo)原點,則線段PO的中點M的軌跡方程是( 。
A.x2=py(x≠0)B.y2=px(y≠0)C.x2=4py(x≠0)D.y2=4px(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=(x+1)lnx-a(x-1).
(1)若函數(shù)f(x)在x=e處的切線與y軸相交于點(0,2-e)求a的值;(e為自然對數(shù)的底數(shù),e=2.781828…);
(2)當(dāng)a≤2時,討論函數(shù)f(x)的單調(diào)性;
(3)當(dāng)1<x<2時,證明:$\frac{2}{x-1}>\frac{1}{lnx}-\frac{1}{ln(2-x)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知O是坐標(biāo)系的原點,F(xiàn)是拋物線C:x2=4y的焦點,過點F的直線交拋物線于A,B兩點,弦AB的中點為M,△OAB的重心為G.
(Ⅰ)求動點G的軌跡方程;
(Ⅱ)設(shè)(Ⅰ)中的軌跡與y軸的交點為D,當(dāng)直線AB與x軸相交時,令交點為E,求四邊形DEMG的面積最小時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某多面體的三視圖,則該多面體的體積為( 。
A.48B.32C.16D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從1、2、3、4、5五個數(shù)字中任選兩個組成多少個沒有重復(fù)數(shù)字的兩位數(shù)( 。
A.45B.90C.20D.10

查看答案和解析>>

同步練習(xí)冊答案