5.設(shè)x,y滿足約束條件:$\left\{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}\right.$,則z=x-2y的最大值為3.

分析 由題意作平面區(qū)域,化簡z=x-2y為y=$\frac{1}{2}$x-$\frac{z}{2}$,從而可得-$\frac{z}{2}$是直線y=$\frac{1}{2}$x-$\frac{z}{2}$的截距,從而解得.

解答 解:由題意作x,y滿足約束條件:$\left\{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}\right.$,平面區(qū)域如下,

化簡z=x-2y為y=$\frac{1}{2}$x-$\frac{z}{2}$,
-$\frac{z}{2}$是直線y=$\frac{1}{2}$x-$\frac{z}{2}$的截距,
故過點(3,0)時截距有最小值,
此時z=x-2y有最大值3,
故答案為:3.

點評 本題考查了線性規(guī)劃的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在平面直角坐標系中,定點M(1,0),兩動點A,B在雙曲線x2-3y2=3的右支上,則cos∠AMB的最小值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)$f(x)=\frac{x^3}{3}-\frac{a}{2}{x^2}+x+1$在區(qū)間$[\frac{1}{2},3]$上單調(diào)遞減,則實數(shù)a的取值范圍是[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ=a(a>0),Q為l上一點,以O(shè)Q為邊作等邊三角形OPQ,且O、P、Q三點按逆時針方向排列.
(Ⅰ)當(dāng)點Q在l上運動時,求點P運動軌跡的直角坐標方程;
(Ⅱ)若曲線C:x2+y2=a2,經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=2x}\\{y′=y}\end{array}\right.$得到曲線C′,試判斷點P的軌跡與曲線C′是否有交點,如果有,請求出交點的直角坐標,沒有則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)當(dāng)x∈$[\frac{π}{4},\frac{π}{2}]$時,求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,桌面上放置了紅、黃、藍三個不同顏色的杯子,杯子口朝上,我們做蒙眼睛翻杯子(杯口朝上的翻為杯口朝下,杯口朝下的翻為杯口朝上)的游戲.
(1)隨機翻一個杯子,求翻到黃色杯子的概率;
(2)隨機翻一個杯子,接著從這三個杯子中再隨機翻一個,請利用樹狀圖求出此時恰好有一個杯口朝上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.把曲線$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.$(θ為參數(shù))化為普通方程為y=x2,x∈[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=ex-ax2-x-1(a∈R)恰有兩個極值點x1,x2(其中x1<x2),且f(x2)=0,則a的取值范圍是( 。
A.$(-∞,\frac{1}{2})$B.(0,1)C.$(0,\frac{1}{2})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.圓的半徑是1,圓心的極坐標是(1,0),則這個圓的極坐標方程是( 。
A.ρ=cosθB.ρ=sinθC.ρ=2cosθD.ρ=2sinθ

查看答案和解析>>

同步練習(xí)冊答案