拋物線x2=-
1
2
y的準(zhǔn)線方程是( 。
A、y=
1
8
B、y=
1
2
C、x=
1
8
D、x=
1
2
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由拋物線的方程求得2p,進(jìn)一步得到
p
2
的值,則拋物線的準(zhǔn)線方程可求.
解答: 解:由x2=-
1
2
y,得2p=
1
2
,p=
1
4
,
p
2
=
1
8
,
∴拋物線x2=-
1
2
y的準(zhǔn)線方程是y=
1
8

故選:A.
點(diǎn)評(píng):本題考查了拋物線的簡(jiǎn)單幾何性質(zhì),考查了拋物線的準(zhǔn)線方程的求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,已知sin2A+cos2A=1-sinA.
(1)求sin2A的值;
(2)若(c+b)2=4bc+4(b<c),且sinC=2sinB,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=3,求下列各式的值:
(1)
4sinα-cosα
3sinα+5cosα
;
(2)
3
4
sin2α+
1
2
cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知車輪旋轉(zhuǎn)的角度與時(shí)間的平方成正比,如果車輛啟動(dòng)后車輪轉(zhuǎn)動(dòng)第一圈需要0.8s,求轉(zhuǎn)動(dòng)開(kāi)始后第3.2s時(shí)的瞬時(shí)角速度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式的值:
(1)lg14-2lg
7
3
+lg7-lg18;
(2)
lg243
lg9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是拋物線y2=4x上一動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)A(0,-2)的距離與到直線x=-1的距離的最小值是( 。
A、
5
B、
3
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓x2+
y2
a2
=1(0<a<1)上離頂點(diǎn)A(0,a)距離最遠(yuǎn)的點(diǎn)恰好是另一個(gè)頂點(diǎn)A′(0,-a),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=kx+b的圖象與x軸、y軸分別相交于點(diǎn)A、B,
AB
=2
i
+2
j
,函數(shù)g(x)=x2-x-6;
(1)求k、b的值;
(2)當(dāng)滿足f(x)>g(x)時(shí),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1+x
1-x
+lg(3-4x+x2)
的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M時(shí),求f(x)=2x+2+3•4x的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案