設(shè)函數(shù)y=f(x)在(0,+∞)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù)fK(x)=
f(x),f(x)≤K
K,f(x)>K
,取函數(shù)f(x)=
lnx+1
ex
,恒有fK(x)=f(x),則( 。
A、K的最大值為
1
e
B、K的最小值為
1
e
C、K的最大值為2
D、K的最小值為2
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知條件可得k≥f(x)max,用導(dǎo)數(shù)確定函數(shù)函數(shù)的單調(diào)性,求解函數(shù)的最值,進(jìn)而求出k的范圍,進(jìn)一步得出所要的結(jié)果.
解答:解:∵函數(shù)fK(x)=
f(x),f(x)≤K
K,f(x)>K

∴等價(jià)為K≥f(x)max,
∵f(x)=
lnx+1
ex
,
∴f′(x)=
1
x
?ex-(lnx+1)ex
(ex)2
=
1
x
-(lnx+1)
ex

設(shè)g(x)=
1
x
-(lnx+1)
,
則g(x)在(0,+∞)單調(diào)遞減,且g(1)=0,
令f′(x)=0,即
1
x
-(lnx+1)=0

解出x=1,
當(dāng)0<x<1時(shí),f′(x)>0,f(x)單調(diào)遞增,
當(dāng)x>1時(shí),f′(x)<0,f(x)單調(diào)遞減.
故當(dāng)x=1時(shí),f(x)取到極大值同時(shí)也是最大值f(1)=
ln1+1
e
=
1
e

故當(dāng)k≥
1
e
時(shí),恒有fk(x)=f(x)
因此K的最小值為
1
e

故選:B.
點(diǎn)評:本題考查與函數(shù)有關(guān)的新定義題目,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,考查運(yùn)算求解能力,推理論證能力,解題時(shí)要認(rèn)真審題,仔細(xì)解答.綜合性較強(qiáng),有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

重慶市教委為配合教育部公布高考改革新方案,擬定在重慶某中學(xué)進(jìn)行調(diào)研,廣泛征求高三年級學(xué)生的意見.重慶么中學(xué)高三年級共有700名學(xué)生,其中理科生500人,文科生200人,現(xiàn)采用分層抽樣的方法從中抽取14名學(xué)生參加調(diào)研,則抽取的理科生的人數(shù)為( 。
A、2B、4C、5D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)(6,
6
)的直角坐標(biāo)為(  )
A、(-3
3
,3)
B、(-3
3
,-3)
C、(-3,3
3
D、(-3,-3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[-2,1]時(shí),不等式ax3-x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、[-5,-3]
B、[-6,-
9
8
]
C、[-6,-2]
D、[-4,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈[-1,1]時(shí),f(x)=x2-ax+
a
2
>0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、(0,2)
B、(2,+∞)
C、(0,+∞)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若-2≤x<-1時(shí),x2+2ax+a<0成立,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos2x+sinx(x∈[-
π
4
,
π
4
])的最大值和最小值分別為(  )
A、1,-1
B、
1+
2
2
,-
1
2
C、
1+
2
2
,
1-
2
2
D、
5
4
,
1-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線x2=2py(p>0)上縱坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離為3,則焦點(diǎn)到準(zhǔn)線的距離為(  )
A、2
B、8
C、
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x按向量
a
平移后得到的直線與曲線y=ln(x+2)相切,則
a
為( 。
A、(0,1)
B、(1,0)
C、(0,2)
D、(2,0)

查看答案和解析>>

同步練習(xí)冊答案