分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)基本不等式的性質(zhì)求出函數(shù)的最小值即可;(2)求出h(x)的導(dǎo)數(shù),得到h(x)的單調(diào)區(qū)間,求出函數(shù)的極值即可.
解答 解:(1)f′(x)=x+$\frac{a-1}{x}$-3,其中x>0.
因為a=5,又x>0,所以$x+\frac{4}{x}-3≥4-3=1$,
當且僅當x=2時取等號,其最小值為1;…(4分)
(2)當a=3時,h(x)=$\frac{1}{2}$x2+2lnx-3x,
h′(x)=x+$\frac{2}{x}$-3=$\frac{(x-1)(x-2)}{x}$,…(6分)
x,h′(x),h(x)的變化如下表:
x | (0,1) | 1 | (1,2) | 2 | (2,+∞) |
h′(x) | + | 0 | - | 0 | + |
h(x) | 遞增 | -$\frac{5}{2}$ | 遞減 | 2ln2-4 | 遞增 |
點評 本題考查了函數(shù)的單調(diào)性、最值、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{5}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com