分析 $S_n^2$=an$({S_n}-\frac{1}{2})(n≥2)$,可得$S_n^2$=(Sn-Sn-1)$({S_n}-\frac{1}{2})(n≥2)$,化為:$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,再利用等差數列的通項公式即可得出.
解答 解:∵$S_n^2$=an$({S_n}-\frac{1}{2})(n≥2)$,
∴$S_n^2$=(Sn-Sn-1)$({S_n}-\frac{1}{2})(n≥2)$,
化為:$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=2,
∴數列$\{\frac{1}{{S}_{n}}\}$是等差數列,公差為2,首項a1=1.
∴$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{1}}$+2(n-1)=2n-1,
∴Sn=$\frac{1}{2n-1}$.n=1時也成立.
∴Sn=$\frac{1}{2n-1}$.
故答案為:$\frac{1}{2n-1}$.
點評 本題考查了遞推關系、等差數列的通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 15、18 | B. | 14、18 | C. | 13、18 | D. | 12、18 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 9 | B. | 8 | C. | 7 | D. | 6 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com