已知:如圖:平面上兩點(diǎn)P(0,1)、Q(3,6),在直線y=x上取兩點(diǎn)M、N,使|MN|=
2
a(a>0,a為常數(shù))且使|PM|+|MN|+|NQ|的值取最小,則N的坐標(biāo)為( 。
A、(
2
a,
2
a)
B、(a,a)
C、(1+
3
4
a,1+
3
4
a)
D、(
3
2
+
3
4
a,
3
2
+
3
4
a)
考點(diǎn):兩點(diǎn)間的距離公式
專(zhuān)題:直線與圓
分析:P(0,1)關(guān)于y=x對(duì)稱(chēng)點(diǎn)(1,0),沿y=x向右上平移|MN|個(gè)單位到點(diǎn)G(1+a,a),連GQ交直線y=x即為N點(diǎn)坐標(biāo).
解答: 解:P(0,1)關(guān)于y=x對(duì)稱(chēng)點(diǎn)(1,0),
沿y=x向右上平移|MN|個(gè)單位到點(diǎn)G(1+a,a),
連GQ交直線y=x即為N點(diǎn)坐標(biāo);
直線GQ的方程為y-6=
a-6
1+a-3
(x-3)
,化為y-6=
a-6
a-2
(x-3)

與y=x聯(lián)立解得
x=
3
4
a+
3
2
y=
3
4
a+
3
2
,
故選:D.
點(diǎn)評(píng):本題考查了對(duì)稱(chēng)點(diǎn)問(wèn)題、和最小值問(wèn)題,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[-2,2]時(shí),ax<2(a>0且a≠1),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,首項(xiàng)為a1,公比為q,Sn表示其前n項(xiàng)和.若a1=a∈[
1
2010
1
1949
]
,
S6
S3
=9,記數(shù)列{log2an}的前n項(xiàng)和為T(mén)n,當(dāng)n=
 
時(shí),Tn有最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若sin(3π-A)=
2
sin(π-B),cos(
2
-A)=
2
cos(π-B).試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>b,m>0,試證明
b-m
a-m
b
a
的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l在x軸上的截距為3,在y軸上的截距為-2,則l的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin2xcosφ-2cos2xsin(π-φ)-cos(
π
2
+φ)(-
π
2
<ϕ<
π
2
),在x=
π
6
時(shí)取得最大值.
(1)求φ的值;
(2)將函數(shù)y=f(x)圖象上各點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,若g(α)=
1
3
,α∈(-
π
2
,0),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(x+
π
4
)=
4
5

(1)求cos(x-
π
4
)的值;
(2)設(shè)
π
4
<x<
4
,求:
①cos(x+
π
4
)的值;
sin2x-2sin2x
1+tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A′B′C′D′中,AB的中點(diǎn)為M,DD′的中點(diǎn)為N,正方形A′B′C′D′的中心為R,則異面直線MR與CN所成的角的余弦值是( 。
A、0
B、1
C、
3
5
D、
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案