7.記數(shù)列{2n}的前n項和為an,數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Sn,數(shù)列{bn}的通項公式為bn=n-8,則bnSn的最小值為( 。
A.-3B.-4C.3D.4

分析 由等差數(shù)列通項公式求得an=2×$\frac{n(n+1)}{2}$=n(n+1),$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,采用“裂項法”即可求得數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Sn,bnSn=(n-8)(1-$\frac{1}{n+1}$)=n+1+$\frac{9}{n+1}$-10,利用基本不等式的性質(zhì),即可求得bnSn的最小值.

解答 解:由題意可知:an=2×$\frac{n(n+1)}{2}$=n(n+1),
∴$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$,
=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{n+1}$,
則bnSn=(n-8)(1-$\frac{1}{n+1}$)=n+1+$\frac{9}{n+1}$-10≥2$\sqrt{(n+1)×\frac{9}{n+1}}$-10=-4,
當且僅當n+1=$\frac{9}{n+1}$,即n=2時取最小值-4,
∴bnSn的最小值-4,
故答案選:B.

點評 本題考查等差數(shù)列通項公式,“裂項法”求數(shù)列的前n項和,考查數(shù)列與基本不等式相結(jié)合,考查計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.在某項娛樂活動的海選過程中評分人員需對同批次的選手進行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰成績在(40,60)內(nèi)的選手可以參加復活賽,如果通過,也可以參加第二輪比賽.
(Ⅰ)已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,估計這200名參賽選手成績的平均數(shù)和中位數(shù);
(Ⅱ)現(xiàn)有6名選手的海選成績分別為(單位:分)43,45,52,53,58,59,經(jīng)過復活賽后,有二名選手進入到第二輪比賽,求這2名選手的海選成績均在(50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥3\\ 2x-y≤0\end{array}\right.$,若y≥k(x+2)恒成立,則實數(shù)k的最大值是( 。
A.-1B.$-\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,則f(3)=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某校高三數(shù)學備課組為了更好的制定二輪復習的計劃,開展了試卷講評后效果的調(diào)研,從上學期期末數(shù)學試題中選出一些學生易錯題,重新進行測試,并認為做這些題不出任何錯誤的同學為“過關(guān)”,出了錯誤的同學認為“不過關(guān)”.現(xiàn)隨機抽查了年級50人,他們的測試成績的頻數(shù)分布如下表:
期末分數(shù)段(0,60)[60,75)[75,90)[90,105)[105,120)[120,150]
人數(shù)510151055
“過關(guān)”人數(shù)129734
(1)由以上統(tǒng)計數(shù)據(jù)完成如下2×2列聯(lián)表,并判斷是否有95%的把握認為期末數(shù)學成績不低于90分與測試“過關(guān)”是否有關(guān)?說明你的理由.
分數(shù)低于90分人數(shù)分數(shù)不低于90分人數(shù)合計
過關(guān)人數(shù)121426
不過關(guān)人數(shù)18624
合計302050
(2)在期末分數(shù)段[105,120)的5人中,從中隨機選3人,記抽取到過關(guān)測試“過關(guān)”的人數(shù)為X,求X的分布列及數(shù)學期望.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.025
k2.0722.7063.8415.024
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.求下列函數(shù)的導數(shù):
(1)$y=\frac{{{x^3}-1}}{sinx}$;         
(2)y=2e1-x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=e|x-a|(a為常數(shù)).若f(x)在區(qū)間[1,+∞)上是增函數(shù),則a的取值范圍是( 。
A.(-∞,1]B.(+∞,1)C.(+∞,2)D.(+∞,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.tan($\frac{π}{6}$-α)=$\frac{\sqrt{3}}{3}$,則tan($\frac{5π}{6}$+α)=( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在直角坐標系xOy中,以O為極點,x軸為正半軸建立直角坐標系,曲線M的方程為ρ2(3+cos2θ)=8.
(1)求曲線的直角坐標方程
(2)若點A(0,m),B(n,0)在曲線M上,點F(0,-$\sqrt{{m^2}-{n^2}}}$),F(xiàn)P平行于x軸交曲線M于點P(x0,y0),其中m>0,n>0,x0>0,求證:PO∥BA.

查看答案和解析>>

同步練習冊答案