9.若離散型隨機變量的分布列為
X01
P$\frac{a}{2}$$\frac{a^2}{2}$
則X的數(shù)學期望為(  )
A.2B.2或0.5C.0.5D.1

分析 由離散型隨機變量X的分布列的性質(zhì)先求出a=1,由此能求出X的數(shù)學期望.

解答 解:由離散型隨機變量X的分布列,得:
$\left\{\begin{array}{l}{a≥0}\\{\frac{a}{2}+\frac{{a}^{2}}{2}=1}\end{array}\right.$,
解得a=1,
∴X的數(shù)學期望E(X)=0×$\frac{1}{2}+1×\frac{1}{2}$=$\frac{1}{2}$=0.5.
故選:C.

點評 本題考查離散型隨機變量的數(shù)學期望的求法,是基礎題,解題時要認真審題,注意離散型隨機變量的分布列的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=3x2-2x,數(shù)列{an}的前n項和為Sn,點(n,Sn)都在函數(shù)圖象上,令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn為數(shù)列{bn}的前n項和,使得Tn<$\frac{m}{20}$對任意的n∈N*恒成立的最小正整數(shù)m為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如果滿足∠ABC=60°,AC=12,BC=k的△ABC有兩個,那么k的取值范圍是$12<k<8\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.甲、乙兩人進行定點投籃游戲,投籃者若投中.則繼續(xù)投籃,否則由對方投籃,第-次由甲投籃;已知每次投籃甲、乙命中的概率分別為$\frac{1}{3}$,$\frac{3}{4}$.
(1)求第三次由乙投籃的概率;
(2)在前3次投籃中,乙投籃的次數(shù)為ξ.求ξ的分布列、期望及標準差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.物體沿直線y=3x移動,以(0,0)為起點,時間t為參數(shù),則物體的位置可用參數(shù)方程表示為:$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{10}t}\\{y=\frac{3\sqrt{10}}{10}t}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知cos(α+$\frac{π}{4}}$)=$\frac{2}{3}$,求sin(${\frac{π}{4}$-α)的值$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別是a,b,c,sinA,sinB,sinC成等差數(shù)列,且a=2c,則cosA=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.求和:Sn=$\frac{1}{1×5}$+$\frac{1}{3×7}$+$\frac{1}{5×9}$+…+$\frac{1}{(2n-1)(2n+3)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在△ABC中,角A、B、C的對邊分別為a,b,c,且acosB+acosC=b+c,則△ABC的形狀是直角三角形
(橫線上填“等邊三角形、銳角三角形、鈍角三角形、直角三角形”中的一個).

查看答案和解析>>

同步練習冊答案