A(1,1,-1),B(2,2,2),C(3,2,4),則△ABC面積為
 
考點:三角形的面積公式,空間兩點間的距離公式
專題:計算題,空間位置關(guān)系與距離
分析:利用向量的數(shù)量積可求得cosA,再求sinA,利用三角形的面積公式即可得出.
解答: 解:∵A(1,1,-1),B(2,2,2),C(3,2,4),
AB
=(1,1,3),
AC
=(2,1,5),
AB
AC
=18,|
AB
|=
11
,|
AC
|=
30

∴cosA=
18
11
30

∴sinA=
55
55

∴△ABC的面積S=
1
2
×
11
×
30
×
55
55
=
6
2

故答案為:
6
2
點評:本題考查了向量的數(shù)量積、向量的夾角公式、三角形的面積公式,考查了計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某高校甲,乙,丙,丁四位研究生新生可通過抽簽的方式,在A,B,C,D四位老師為導(dǎo)師,且他們對導(dǎo)師的選擇相互獨立.
(Ⅰ)求甲、乙、丙三人都選擇D為導(dǎo)師的概率;
(Ⅱ)求四位研究生至少有一人選擇C作為導(dǎo)師的概率;
(Ⅲ)設(shè)四位選手選擇B為導(dǎo)師的人數(shù)ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四棱柱ABCD-A1B1C1D1中,AB=2,CC1=2
2
,E為CC1的中點,則直線BE與AC1所成角的余弦值為(  )
A、
2
4
B、
6
6
C、
2
2
D、
6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-a)(x-b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=a-x+b的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|log2x|,0<x≤2
-x2+4x-3,x>2
,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(  )
A、[2,3]
B、(2,3)
C、[2,3)
D、(2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四棱錐O-ABCD(底面是正方形且頂點在頂面的射影是底面正方形的中心的棱錐叫做正四棱錐)的體積為12,底面邊長為2
3
,則正四棱錐O-ABCD內(nèi)切球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點O(0,0)且與圓C:(x-2)2+y2=3有公共點,則直線l的斜率最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin7°cos37°-sin83°sin37°的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=2,a17=66,通項公式是項數(shù)n的一次函數(shù).
(1)求數(shù)列{an}的通項公式;
(2)88是否是數(shù)列{an}中的項?

查看答案和解析>>

同步練習冊答案