4.設(shè)f:x→x2是集合M到集合N的映射,若N={4,0,9},則M不可能是( 。
A.{0}B.{2,3}C.{0,1,2}D.{0,3}

分析 直接利用映射的概念逐一核對(duì)四個(gè)選項(xiàng)即可得到答案.

解答 解:當(dāng)集合M分別是{0},{2,3},{0,3}時(shí),由映射概念可知,在f:x→x2的作用下,都能夠構(gòu)成M到N={4,0,9}的映射,而M={0,1,2}時(shí),在f:x→x2的作用下,1在集合N中沒(méi)有像.
∴M不可能是{0,1,2}.
故選C.

點(diǎn)評(píng) 本題考查了映射的概念,是基礎(chǔ)的概念題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖所示是沿圓錐的兩條母線將圓錐削去一部分后所得幾何體的三視圖,其體積為$\frac{16π}{9}+\frac{{2\sqrt{3}}}{3}$,則圓錐的母線長(zhǎng)為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知拋物線的方程為y2=2px(p>0),O為坐標(biāo)原點(diǎn),A、B為拋物線上的點(diǎn),若△OAB為等邊三角形,且面積為12$\sqrt{3}$,則p的值為( 。
A.2B.1C.3D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.閱讀程序框圖(如圖),完成以下問(wèn)題:
(Ⅰ)寫(xiě)出y與x的函數(shù)關(guān)系式y(tǒng)=f(x),并求f[f($\frac{1}{10}$)]的值;
(Ⅱ)在區(qū)間[0,100]上隨機(jī)取一個(gè)數(shù)x,求f(x)∈[1,3]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求下列函數(shù)的定義域:
(1)f(x)=$\sqrt{\sqrt{4-{x}^{2}}-1}$;
(2)f(x)=$\frac{ln(1-|x-1|)}{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足(2a-c)cosB=bcosC.
(Ⅰ) 求角B的大小;
(Ⅱ) 設(shè)$\vec m$=(sinA,cos2A),$\vec n$=(4k,1)(k>1),且$\vec m$•$\vec n$的最大值是7,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.根式的性質(zhì)
(1)$\root{n}{0}$=0(n∈N*).
(2)($\root{n}{a}$)n=a(n∈N*).
(3)$\root{n}{{a}^{n}}$=a(n為奇數(shù),n∈N*),$\root{n}{{a}^{n}}$=|a|=$\left\{\begin{array}{l}{a,a≥0}\\{-a,a<0}\end{array}\right.$(n為偶數(shù),n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}是公差不為0的等差數(shù)列,a2=3,且a5是a4,a8的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求使an<Sn成立的所有n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知F1、F2是橢圓C的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),若$\overrightarrow{P{F}_{1}}$⊥$\overrightarrow{P{F}_{2}}$,且△PF1F2的面積和周長(zhǎng)均為為16,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案