16.已知Sn是數(shù)列{an}的前n項(xiàng)之和Sn=1-($\frac{1}{2}$)n,則an=$(\frac{1}{2})^{n}$.

分析 Sn=1-($\frac{1}{2}$)n,n=1時,a1=S1=$\frac{1}{2}$.n≥2時,an=Sn-Sn-1,即可得出.

解答 解:∵Sn=1-($\frac{1}{2}$)n,∴n=1時,a1=S1=1$-\frac{1}{2}$=$\frac{1}{2}$.
n≥2時,an=Sn-Sn-1=1-($\frac{1}{2}$)n-$[1-(\frac{1}{2})^{n-1}]$=$(\frac{1}{2})^{n}$,n=1時也成立,
則an=$(\frac{1}{2})^{n}$.
故答案為:$(\frac{1}{2})^{n}$.

點(diǎn)評 本題考查了遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線經(jīng)過圓x2+y2-4x+2y=0的圓心,焦點(diǎn)到漸近線的距離為2,則雙曲線C的標(biāo)準(zhǔn)方程是( 。
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,過點(diǎn)F作x軸的垂線,與雙曲線及其漸近線在第一象限分別交于點(diǎn)A,P,若|AP|=$\frac{a}{3}$,則雙曲線的離心率為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.南京東郊有一個寶塔,塔高60多米,九層八面,中間沒有螺旋的扶梯.寶塔的扶梯有個奧妙,每上一層,就少了一定的級數(shù).從第四層到第六層,共有28級.第一層樓梯數(shù)是最后一層樓梯數(shù)的3倍.則此塔樓梯共有( 。
A.117級B.112級C.118級D.110級

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求曲線C的普通方程;
(2)若z=(2cosθ-t-2)2+($\sqrt{3}$sinθ-t+1)2,求z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在(x2-x-2)3的展開式中x5的系數(shù)是-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)不等式組$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域?yàn)镈,點(diǎn)A(2,0),點(diǎn)B(1,0),在區(qū)域D內(nèi)隨機(jī)取一點(diǎn)M,則點(diǎn)M滿足|MA|≥$\sqrt{2}$|MB|的概率是$\frac{3π}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若$\overrightarrow{a}$=(1,λ,2),$\overrightarrow$=(2,-1,1),$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則λ的值為-17或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.計(jì)算:sin(-690°)=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案