3.“中國式過馬路”存在很大的交通安全隱患,某調(diào)查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:
男性女性合計
反感10
不反感8
合計30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是$\frac{8}{15}$.
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程),并據(jù)此資料判斷是否有95%的把握認為反感“中國式過馬路”與性別有關?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

分析 (I)根據(jù)在全部30人中隨機抽取1人抽到中國式過馬路的概率,做出中國式過馬路的人數(shù),進而做出男生的人數(shù),填好表格.再根據(jù)所給的公式,代入數(shù)據(jù)求出臨界值,把求得的結果同臨界值表進行比較,看出有多大的把握說明反感“中國式過馬路”與性別是否有關.
(II)反感“中國式過馬路”的人數(shù)為X的可能取值為0,1,2,通過列舉得到事件數(shù),分別計算出它們的概率,最后利用列出分布列,求出期望即可.

解答 解:(Ⅰ)

男性女性合計
反感10616
不反感6814
合計161430
…(3分)
設H0:反感“中國式過馬路”與性別與否無關
由已知數(shù)據(jù)得:Χ2=$\frac{30(10×8-6×6)^{2}}{16×14×16×14}$≈1.158<3.841,
所以,沒有95%的理由認為反感“中國式過馬路”與性別有關.…(6分)
(Ⅱ)X的可能取值為0,1,2.
P(X=0)=$\frac{{C}_{8}^{2}}{{C}_{14}^{2}}$=$\frac{4}{13}$,P(X=1)=$\frac{{C}_{8}^{1}{C}_{6}^{1}}{{C}_{14}^{2}}$=$\frac{48}{91}$,P(X=2)=$\frac{{C}_{6}^{2}}{{C}_{14}^{2}}$=$\frac{15}{91}$,…(9分)
所以X的分布列為:
X012
P$\frac{4}{13}$$\frac{48}{91}$$\frac{15}{91}$
…(13分)

點評 本題是一個統(tǒng)計綜合題,包含獨立性檢驗、離散型隨機變量的分布列,本題通過創(chuàng)設情境激發(fā)學生學習數(shù)學的情感,幫助培養(yǎng)其嚴謹治學的態(tài)度.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,AB切⊙O于點B,點G為AB的中點,過G作⊙O的割線交⊙O于點C、D,連接AC并延長交⊙O于點E,連接AD并交⊙O于點F,求證:EF∥AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)y=cos2x+3sinx的值域是(  )
A.$[{-4,\frac{17}{8}}]$B.$(-∞,-4)∪(\frac{17}{8},+∞)$C.[-4,4]D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設集合U={1,2,3,4,5,6},M={1,3,4},則∁UM(  )
A.{3,5,6}B.{1,3,5}C.{2,5,6}D.U

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖是一名籃球運動員在五場比賽中所得分數(shù)的莖葉圖,則該運動員在這五場比賽中得分的中位數(shù)為( 。
A.10B.11C.12D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}的首項a1=1,且an+1=2an+3,n∈N+
(1)求證:數(shù)列{an+3}是等比數(shù)列;
(2)求數(shù)列{n(an+3)}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知定義城為(-1,1)的函數(shù)f(x)的導函數(shù)為f′(x)=5+cosx,且f(0)=0.如果f(1-x)+f(1-x2)<0,則實數(shù)x的取值范圍為( 。
A.(0,1)B.(1,$\sqrt{2}$)C.(0,2)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列幾種推理是演繹推理的是( 。
A.某校高二1班55人,2班54人,3班52人,由此推出高二所有班級人數(shù)超過50人
B.在數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…),由此歸納數(shù)列{an}的通項公式
C.由平面三角形性質(zhì),推測空間四面體的性質(zhì)
D.兩直線平行,內(nèi)錯角相等,如果∠A與∠B是兩條平行直線的內(nèi)錯角,則∠A=∠B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若拋物線y=ax2的焦點F的坐標為(0,-1),則實數(shù)a的值為$-\frac{1}{4}$.

查看答案和解析>>

同步練習冊答案