【題目】北京故宮博物院成立于1925年10月10日,是在明、清朝兩代皇宮及其宮廷收藏的基礎(chǔ)上建立起來的中國(guó)綜合性博物館,每年吸引著大批游客參觀游覽下圖是從2012年到2017年每年參觀人數(shù)的折線圖根據(jù)圖中信息,下列結(jié)論中正確的是
A. 2013年以來,每年參觀總?cè)舜沃鹉赀f增
B. 2014年比2013年增加的參觀人次不超過50萬
C. 2012年到2017年這六年間,2017年參觀總?cè)舜巫疃?/span>
D. 2012年到2017年這六年間,平均每年參觀總?cè)舜纬^160萬
【答案】C
【解析】
由從2012年到2017年每年參觀人數(shù)的折線圖,得2012年到2017年這六年間,2017年參觀總?cè)舜巫疃啵?/span>
由從2012年到2017年每年參觀人數(shù)的折線圖,得:
在A中,2013年以來,2015年參觀總?cè)舜伪?/span>2014年參觀人次少,故A錯(cuò)誤;
在B中,2014年比2013年增加的參觀人次超過50萬,故B錯(cuò)誤;
在C中,2012年到2017年這六年間,2017年參觀總?cè)舜巫疃啵?/span>C正確;
在D中,2012年到2017年這六年間,平均每年參觀總?cè)舜尾怀^160萬,故D錯(cuò)誤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校書法興趣組有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級(jí)情況如下表:
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加書法比賽每人被選到的可能性相同.
用表中字母列舉出所有可能的結(jié)果;
設(shè)M為事件“選出的2人來自不同年級(jí)且性別相同”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:,直線l:.
當(dāng)時(shí),若圓C與直線l交于A,B兩點(diǎn),過點(diǎn)A,B分別作l的垂線與y軸交于D,E兩點(diǎn),求的值;
過直線l上的任意一點(diǎn)P作圓的切線為切點(diǎn),若平面上總存在定點(diǎn)N,使得,求圓心C的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣10|+|x﹣20|,且滿足f(x)<10a+10(a∈R)的解集不是空集.
(Ⅰ)求實(shí)數(shù)a的取值集合A
(Ⅱ)若b∈A,a≠b,求證aabb>abba .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上一點(diǎn)與橢圓右焦點(diǎn)的連線垂直于x軸,直線l:y=kx+m與橢圓C相交于A,B兩點(diǎn)(均不在坐標(biāo)軸上).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),若△AOB的面積為,試判斷直線OA與OB的斜率之積是否為定值?若是請(qǐng)求出,若不是請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|ax﹣2|.
(1)若關(guān)于x的不等式f(x)<3的解集為(﹣ , ),求a的值;
(2)f(x)+f(﹣x)≥a對(duì)于任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=2x2+(x﹣2a)|x﹣a|在區(qū)間[﹣3,1]上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( )
A.[﹣4,1]
B.[﹣3,1]
C.(﹣6,2)
D.(﹣6,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點(diǎn). 求證:
(1)PA∥平面BDE;
(2)BD⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xOy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同直線的極坐標(biāo)方程為,曲線C的參數(shù)方程為為參數(shù),設(shè)直線l與曲線C交于A,B兩點(diǎn).
寫出直線的普通方程與曲線C的直角坐標(biāo)方程;
已知點(diǎn)P在曲線C上運(yùn)動(dòng),求點(diǎn)P到直線距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com