已知數(shù)列{an}滿足a1=2,an=-
1
an-1
(n>1),則數(shù)列{an}第2016項是
 
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)數(shù)列的遞推關(guān)系,得到數(shù)列{an}是周期為2的周期數(shù)列即可得到結(jié)論.
解答: 解:∵a1=2,an=-
1
an-1
(n>1),
∴an+2=-
1
an+1
=-
1
-
1
an
=an
故數(shù)列{an}是周期為2的周期數(shù)列,
則a2016=a2=-
1
a1
=-
1
2

故答案為:-
1
2
點評:本題主要考查遞推數(shù)列的應(yīng)用,根據(jù)條件得到數(shù)列{an}是周期為2的周期數(shù)列是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,且對于任意的n∈N*都有an+1=an+a1+n,則
1
a1
+
1
a2
+…+
1
a2014
等于( 。
A、
4026
2015
B、
4028
2015
C、
2013
2014
D、
2014
2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程|x+
1
x
|-|x-
1
x
|-kx-1=0有五個互不相等的實數(shù)根,則k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我市某公司為激勵工人進(jìn)行技術(shù)革新,既保質(zhì)量又提高產(chǎn)值,對小組生產(chǎn)產(chǎn)值超產(chǎn)部分進(jìn)行獎勵,設(shè)年底時超產(chǎn)產(chǎn)值為x(x>0)萬元,當(dāng)x不超過35萬元時,獎金為log6(x+1)萬元,當(dāng)x超過35萬元時,獎金為5%•(x+5)萬元
(1)若某小組年底超產(chǎn)產(chǎn)值為75萬元,則其超產(chǎn)獎金為多少?
(2)寫出獎金y(單位:萬元)關(guān)于超產(chǎn)產(chǎn)值x的函數(shù)關(guān)系式;
(3)某小組想爭取年超產(chǎn)獎金y∈[1,6](單位:萬元),則超產(chǎn)產(chǎn)值x應(yīng)在什么范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=
(n+2)
a
2
n
-nan+n+1
a
2
n
+1
(n∈N*),Sn是數(shù)列{an}的前n項和.
(1)若a1=1,求a2,a3,a4并推證數(shù)列{an}的通項公式;
(2)若a1∈[
1
2
,
3
2
],求證:|Sn-
n(n+1)
2
|<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為(-∞,1)∪(1,+∞)的函數(shù)y=f(x)滿足f(x)=f(2-x),(x-1)f′(x)>0.若x1+x2>2且x1<x2,則( 。
A、f(x1)<f(x2
B、f(x1)>f(x2
C、f(x1)=f(x2
D、f(x1),f(x2)大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=( 。
A、132B、299
C、68D、99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓M:(x-3)2+(y-3)2=4,△ABC為圓M的內(nèi)接正三角形,E為邊AB的中點,當(dāng)正△ABC繞圓心M轉(zhuǎn)動,且F是AC邊上的中點,
ME
OF
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個社會調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖所示)為了進(jìn)一步分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,則在(2500,3000元/月)收入段應(yīng)抽出( 。┤耍
A、10人B、15人
C、20人D、25人

查看答案和解析>>

同步練習(xí)冊答案