分析 由題意可得ω•$\frac{π}{2}$+$\frac{π}{4}$≥$\frac{π}{2}$+2kπ,且ω•π+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,由此求得ω的取值范圍.
解答 解:∵函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{2}$,π)上單調(diào)遞減,則ω•$\frac{π}{2}$+$\frac{π}{4}$≥$\frac{π}{2}$+2kπ,且ω•π+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,k∈Z,
求得4k+$\frac{1}{2}$≤ω≤$\frac{5}{4}$+2k,取k=0,可得ω的取值范圍為[$\frac{1}{2}$,$\frac{5}{4}$],
故答案為:[$\frac{1}{2}$,$\frac{5}{4}$].
點(diǎn)評 本題主要考查正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有最大值$\frac{1}{2}$ | B. | 有最大值$\frac{1}{4}$ | C. | 有最小值$\frac{1}{2}$ | D. | 有最小值$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 將y=sin(5x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{30}$;再將所有點(diǎn)的橫坐標(biāo)伸長為原來的5倍,縱坐標(biāo)不變 | |
B. | 將y=sin(5x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{30}$;再將所有點(diǎn)的橫坐標(biāo)伸長為原來的5倍,縱坐標(biāo)不變 | |
C. | 將y=sin(5x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{30}$;再將所有點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{5}$倍,縱坐標(biāo)不變 | |
D. | 將y=sin(5x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{30}$;再將所有點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{5}$倍,縱坐標(biāo)不變 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 6 | 7 | 9 | 10 |
y | 12 | 10 | 8 | 8 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -$\frac{5}{7}$ | C. | $\frac{5}{7}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com