20.[重點(diǎn)中學(xué)做]已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{2}$,π)上單調(diào)遞減,則ω的取值范圍是[$\frac{1}{2}$,$\frac{5}{4}$].

分析 由題意可得ω•$\frac{π}{2}$+$\frac{π}{4}$≥$\frac{π}{2}$+2kπ,且ω•π+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,由此求得ω的取值范圍.

解答 解:∵函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{2}$,π)上單調(diào)遞減,則ω•$\frac{π}{2}$+$\frac{π}{4}$≥$\frac{π}{2}$+2kπ,且ω•π+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,k∈Z,
求得4k+$\frac{1}{2}$≤ω≤$\frac{5}{4}$+2k,取k=0,可得ω的取值范圍為[$\frac{1}{2}$,$\frac{5}{4}$],
故答案為:[$\frac{1}{2}$,$\frac{5}{4}$].

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如果X~B(1,p),則D(X)( 。
A.有最大值$\frac{1}{2}$B.有最大值$\frac{1}{4}$C.有最小值$\frac{1}{2}$D.有最小值$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.由函數(shù)y=sin(5x+$\frac{π}{6}$)的圖象得到y(tǒng)=sinx的圖象,下列操作正確的是( 。
A.將y=sin(5x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{30}$;再將所有點(diǎn)的橫坐標(biāo)伸長為原來的5倍,縱坐標(biāo)不變
B.將y=sin(5x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{30}$;再將所有點(diǎn)的橫坐標(biāo)伸長為原來的5倍,縱坐標(biāo)不變
C.將y=sin(5x+$\frac{π}{6}$)的圖象向右平移$\frac{π}{30}$;再將所有點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{5}$倍,縱坐標(biāo)不變
D.將y=sin(5x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{30}$;再將所有點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{5}$倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某冷飲店為了解氣溫變化對(duì)其營業(yè)額的影響,隨機(jī)記錄了該店1月份銷售淡季中5天的日營業(yè)額y(單位:百元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表所示:
x367910
y1210887
(Ⅰ)判定y與x之間是正相關(guān)還是負(fù)相關(guān),并求回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$
(Ⅱ)若該地1月份某天的最低氣溫為6℃,預(yù)測(cè)該店當(dāng)日的營業(yè)額
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(2016)=( 。
A.-$\sqrt{2}$B.$\sqrt{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知tan(α+$\frac{π}{4}$)=2,tan(β-$\frac{3π}{4}$)=-3,則tan(α-β)=( 。
A.1B.-$\frac{5}{7}$C.$\frac{5}{7}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}^{2}+3{a}_{n}+1}{{a}_{n}+2}$(n∈N*).
(Ⅰ)求證:$\frac{2n+1}{3}$≤an≤n;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)n≥5時(shí),求證:Sn≥$\frac{1}{3}$n2+$\frac{4}{5}$n-$\frac{8}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一邊長為a的正方形鐵片,鐵片的四角截去四個(gè)邊長均為x的小正方形,然后做成一個(gè)無蓋的方盒,當(dāng)x等于$\frac{a}{6}$時(shí),方盒的容積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,如果b2+c2-a2-bc=0,那么角A的值為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案