9.某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[90,100),[100,110),…,[140,150]后得到如圖所示的頻率分布直方圖,則估計(jì)本次考試的平均分為(  )
A.121B.119C.118.5D.118

分析 由頻率分布直方圖先求出[120,130)內(nèi)的頻率,由此能估計(jì)本次考試的平均分.

解答 解:由頻率分布直方圖得[120,130)內(nèi)的頻率為:
1-(0.010+0.015+0.015+0.025+0.005)×10=0.3,
∴估計(jì)本次考試的平均分為:
$\overline{x}$=95×0.010×10+105×0.015×10+115×0.015×10+125×0.3+135×0.025×10+145×0.005×10=121.
故選:A.

點(diǎn)評(píng) 本題考查平均分的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若集合A={x|-1<x≤3},B={x|x=2n-1,n∈N},則A∩B中元素個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知F1,F(xiàn)2是橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的兩個(gè)焦點(diǎn),P是橢圓上的一點(diǎn),若△PF1F2的內(nèi)切圓半徑為1,則∠F1PF2的余弦值為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow a$=(1,0),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知兩條直線(xiàn)l1:3x+4y-2=0與l2:2x+y+2=0的交點(diǎn)P,求:
(1)過(guò)點(diǎn)P且過(guò)原點(diǎn)的直線(xiàn)l的方程;
(2)若直線(xiàn)m與l平行,且點(diǎn)P到直線(xiàn)m的距離為3,求直線(xiàn)m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$sin(\frac{π}{4}+α)=\frac{{\sqrt{3}}}{2}$,則sin(-2α)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如果直線(xiàn)2x-y+m=0與圓x2+(y-2)2=5相切,那么m的值為-3或7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知m,n為不同的直線(xiàn),α,β為不同的平面,則下列說(shuō)法正確的是( 。
A.m?α,n∥m⇒n∥αB.m?α,n⊥m⇒n⊥αC.m⊥α,m∥n,n∥β⇒α⊥βD.m?α,n?β,m∥n⇒α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在數(shù)列{an}中,a1=$\frac{1}{2}$,并且當(dāng)n≥2時(shí),an=$\frac{2S_n^2}{{2{S_n}-1}}$.
(1)求證數(shù)列$\{\frac{1}{S_n}\}$是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案