19.若集合A={x|-1<x≤3},B={x|x=2n-1,n∈N},則A∩B中元素個數(shù)為( 。
A.0B.1C.2D.3

分析 根據(jù)交集的定義進行計算即可得出結(jié)論.

解答 解:集合A={x|-1<x≤3},B={x|x=2n-1,n∈N},
所以A∩B={x|-1<x≤3,且x=2n-1,n∈N*}
={x|x=1,x=3}
={1,3},
∴A∩B中元素個數(shù)為2.
故選:C.

點評 本題考查了集合的定義與運算問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥側(cè)面BB1C1C,且側(cè)面AA1B1B為正方形,側(cè)面BB1C1C為菱形,∠BB1C1=60°.
(1)求證:B1C⊥AC1;
(2)若點E是B1C的中點,點F是AA1的中點,求證:EF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若數(shù)列{an}中,a1=1,an+an-1=3(n≥2),Sn為數(shù)列{an}的前n項和,則S2015=3022.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.定義函數(shù)f(x)=<x•<x>>,其中<x>表示不小于x的最小整數(shù),如<1.3>=2,<-2.1>=-2,當x∈(0,n](n∈N*)時,函數(shù)f(x)的值域為An,記集合An中的元素的個數(shù)為an,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$=$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知點A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,-2π<φ≤0)圖象上的任意兩點,且角φ的終邊經(jīng)過點P(1,-$\sqrt{3}$),已知|f(x1)-f(x2)|=4時,|x1-x2|的最小值為$\frac{π}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)當x∈[0,$\frac{π}{3}$]時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.P是橢圓$\frac{x^2}{5}+\frac{y^2}{4}=1$上的一點,F(xiàn)1和F2是焦點,若∠F1PF2=30°,則△F1PF2的面積等于( 。
A.$\frac{{16\sqrt{3}}}{3}$B.$16(2+\sqrt{3})$C.$4(2-\sqrt{3})$D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,內(nèi)角A,B,C的對邊長分別為a,b,c,已知a2-c2=2b,且sinAcosC=3cosAsinC.
(Ⅰ)求b;
(Ⅱ)若a=6,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{{x}^{3}}{6}$+$\frac{a}{2}$x2+2xlnx,(a∈R),在x=1處的切線斜率為-$\frac{1}{2}$.
(Ⅰ)求實數(shù)a的值及此時的切線方程;
(Ⅱ)若曲線y=f(x)上存在三條斜率為m+2的切線,三個切點的橫坐標分別為x1,x2,x3(x1<x2<x3),求證:x3-x1<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150]后得到如圖所示的頻率分布直方圖,則估計本次考試的平均分為( 。
A.121B.119C.118.5D.118

查看答案和解析>>

同步練習冊答案