已知函數(shù)(為自然對(duì)數(shù)的底數(shù))
(Ⅰ)若曲線在點(diǎn)處的切線平行于軸,求的值;
(Ⅱ)求函數(shù)的極值;
(Ⅲ)當(dāng)時(shí),若直線與曲線沒(méi)有公共點(diǎn),求的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如下圖,過(guò)曲線:上一點(diǎn)作曲線的切線交軸于點(diǎn),又過(guò)作 軸的垂線交曲線于點(diǎn),然后再過(guò)作曲線的切線交軸于點(diǎn),又過(guò)作軸的垂線交曲線于點(diǎn),,以此類推,過(guò)點(diǎn)的切線 與軸相交于點(diǎn),再過(guò)點(diǎn)作軸的垂線交曲線于點(diǎn)(N).
(1) 求、及數(shù)列的通項(xiàng)公式;(2) 設(shè)曲線與切線及直線所圍成的圖形面積為,求的表達(dá)式; (3) 在滿足(2)的條件下, 若數(shù)列的前項(xiàng)和為,求證:N.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若時(shí),,求的最小值;
(Ⅱ)設(shè)數(shù)列的通項(xiàng),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù),過(guò)曲線上的點(diǎn)P的切線方程為
(1)若在時(shí)有極值,求的表達(dá)式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)若在處取得極值,求的極大值;
(2)若在區(qū)間上的圖像在圖像的上方(沒(méi)有公共點(diǎn)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)若a=-1,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45o,對(duì)于任意的t [1,2],函數(shù)是的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(Ⅰ)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(Ⅱ)對(duì)一切的,恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com