分析 由正弦定理化簡(jiǎn)已知的等式,得到關(guān)于a,b及c的關(guān)系式,然后再利用余弦定理表示出cosA,利用同角三角函數(shù)基本關(guān)系式可求sinA,進(jìn)而利用三角形面積公式可求bc的值,利用余弦定理,基本不等式可求a的最小值,結(jié)合三角形面積公式即可得解BC邊上的高的最大值.
解答 解:∵$3({{{sin}^2}B+{{sin}^2}C-{{sin}^2}A})=2\sqrt{3}sinBsinC$,
∴根據(jù)正弦定理化簡(jiǎn)已知等式得:3b2+3c2-3a2=2$\sqrt{3}$bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\frac{2\sqrt{3}bc}{3}}{2bc}$=$\frac{\sqrt{3}}{3}$,可得:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{6}}{3}$,
∵△ABC的面積為$\sqrt{6}+\sqrt{2}$=$\frac{1}{2}$bcsinA=bc×$\frac{1}{2}×\frac{\sqrt{6}}{3}$,
∴解得:bc=6+2$\sqrt{3}$,
又∵由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{^{2}+{c}^{2}-2×bc×(\frac{\sqrt{3}}{3})}$≥$\sqrt{2bc-\frac{2\sqrt{3}}{3}bc}$=2$\sqrt{2}$,(當(dāng)且僅當(dāng)b=c等號(hào)成立)
∴BC邊上的高h(yuǎn)=$\frac{2S}{a}$≤$\frac{2(\sqrt{6}+\sqrt{2})}{2\sqrt{2}}$=$\sqrt{3}+1$,(當(dāng)且僅當(dāng)b=c等號(hào)成立).
∴BC邊上的高的最大值為$\sqrt{3}+1$.
故答案為:$\sqrt{3}+1$.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式,三角形面積公式,基本不等式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{25}{16}$ | B. | $\frac{55}{16}$ | C. | 35 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2π+\sqrt{3}$ | B. | $π+\sqrt{3}$ | C. | $π+\frac{{4\sqrt{3}}}{3}$ | D. | $π+\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{4}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com