20.已知$\overrightarrow a=(\sqrt{3}sinx-cosx,1)$,$\overrightarrow b=(cosx,m)$,函數(shù)f(x)=$\vec a•\vec b$(m∈R)的圖象過點(diǎn)M($\frac{π}{12}$,0).
(Ⅰ)若x∈[0,π],求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c.若ccosB+bcosC=2acosB,求f(A)的取值范圍.

分析 (Ⅰ)運(yùn)用向量的數(shù)量積的坐標(biāo)表示和三角函數(shù)的二倍角公式及兩角差的正弦公式,結(jié)合正弦函數(shù)的周期和增區(qū)間,解不等式即可得到所求;
(Ⅱ)運(yùn)用正弦定理,結(jié)合兩角和的正弦公式,化簡可得角B,即有A的范圍,可得(2A-$\frac{π}{6}$)的范圍,結(jié)合正弦函數(shù)的圖象和性質(zhì),可得所求范圍.

解答 解:(Ⅰ)函數(shù)f(x)=f(x)=$\vec a•\vec b$=cosx($\sqrt{3}$sinx-cosx)+m
=$\sqrt{3}$sinxcosx-cos2x+m=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$(1+cos2x)+m
=sin(2x-$\frac{π}{6}$)+m-$\frac{1}{2}$,
由圖象過點(diǎn)M($\frac{π}{12}$,0),可得f($\frac{π}{12}$)=0,
即有sin($\frac{π}{6}$-$\frac{π}{6}$)+m-$\frac{1}{2}$=0,解得m=$\frac{1}{2}$;
則f(x)=sin(2x-$\frac{π}{6}$),
由2kπ-$\frac{π}{2}$<2x-$\frac{π}{6}$<2kπ+$\frac{π}{2}$,解得kπ-$\frac{π}{6}$<x<kπ+$\frac{π}{3}$,
可得f(x)的單調(diào)增區(qū)間為(kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$),k∈Z;
(Ⅱ)ccosB+bcosC=2acosB,
由正弦定理可得sinCcosB+sinBcosC=2sinAcosB,
即sin(C+B)=2sinAcosB,即sinA=2sinAcosB,
即有cosB=$\frac{1}{2}$,解得B=$\frac{π}{3}$,A+C=$\frac{2π}{3}$,
即有0<A<$\frac{2π}{3}$,-$\frac{π}{6}$<2A-$\frac{π}{6}$<$\frac{7π}{6}$,
則sin(2A-$\frac{π}{6}$)∈(-$\frac{1}{2}$,1].
即有f(A)的范圍是(-$\frac{1}{2}$,1].

點(diǎn)評 本題考查向量的數(shù)量積的坐標(biāo)表示,考查正弦定理的運(yùn)用,三角函數(shù)的恒等變換公式的運(yùn)用和正弦函數(shù)的周期,以及單調(diào)區(qū)間的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2-x(4x-m)是奇函數(shù),g(x)=lg(10x+1)+nx是偶函數(shù)
(1)求m+n的值;
(2)設(shè)h(x)=f(x)+g(x)+$\frac{1}{2}$x,試求h(x)在x∈[-1,2]時的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.非零向量$\overrightarrow a$,$\overrightarrow b$不共線且$\overrightarrow n=2\overrightarrow a+3\overrightarrow b$,向量$\overrightarrow m$同時垂直于$\overrightarrow a$、$\overrightarrow b$,則( 。
A.$\overrightarrow m∥\overrightarrow n$B.$\overrightarrow m⊥\overrightarrow n$
C.$\overrightarrow m$與$\overrightarrow n$既不平行也不垂直D.以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)命題p:實(shí)數(shù)x滿足x2-4x+3<0,命題q:滿足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+2x-8>0}\end{array}\right.$,p∧q為假,p∨q為真,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.曲線f(x)=x3+2x+3在(1,f(1))處的切線方程為5x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列選項(xiàng)中敘述錯誤的是(  )
A.命題“若x=0,則x2-x=0”的逆否命題為真命題
B.若命題P:?n∈N,n2>2n,則¬P:?n∈N,n2≤2n
C.若“p∧q”為假命題,則“p∨q”為真命題
D.命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n=0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知平面α截一球面得圓E,過圓心E且與α成135°二面角的平面β截該球面得到圓F.若該球的半徑為5,圓E的面積為9π,則圓F的面積為(  )
A.15πB.17πC.19πD.21π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知正方體ABCD-A1B1C1D1的棱長為a,AC1與BD1相交于點(diǎn)O,則有( 。
A.$\overrightarrow{AB}•\overrightarrow{{A_1}{C_1}}={a^2}$B.$\overrightarrow{AB}•\overrightarrow{A{C_1}}=\sqrt{2}{a^2}$C.$\overrightarrow{AB}•\overrightarrow{AO}=\frac{{\sqrt{3}}}{2}{a^2}$D.$\overrightarrow{BC}•\overrightarrow{D{A_1}}={a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}(x≤0)}\\{f(x-1)(x>0)}\end{array}\right.$,則f(x)=x的解的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案