14.在直角坐標(biāo)系中,邊長(zhǎng)為1的正方形ABCD的兩個(gè)頂點(diǎn)A,B分別在x軸和y軸的正半軸移動(dòng),求頂點(diǎn)C的軌跡方程.

分析 令∠ABO=θ,由邊長(zhǎng)為1的正方形ABCD的頂點(diǎn)A、B分別在x軸、y軸正半軸上,可得出C的坐標(biāo),消去參數(shù)可得頂點(diǎn)C的軌跡方程.

解答 解:令∠ABO=θ,由于AB=1故0B=cosθ,OA=sinθ,
如圖∠CBy=$\frac{π}{2}$-θ,BC=1,故yC=cosθ+cos($\frac{π}{2}$-θ)=cosθ+sinθ,xC=sin($\frac{π}{2}$-θ)=cosθ
∴C(cosθ,cosθ+sinθ),
令x=cosθ,y=cosθ+sinθ,消去參數(shù)可得2x2-2xy+y2-1=0.

點(diǎn)評(píng) 本題考查軌跡方程,考查參數(shù)法的運(yùn)用,考查學(xué)生的計(jì)算能力,設(shè)角引入坐標(biāo)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f(x)=3sin(2x+θ)(0<θ<π)是偶函數(shù),則f(x)在[0,π]上的遞增區(qū)間是( 。
A.[0,$\frac{π}{2}$]B.[$\frac{π}{2}$,π]C.[$\frac{π}{4}$,$\frac{π}{2}$]D.[$\frac{3π}{4}$,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=xetx-ex+1,其中t∈R,e是自然對(duì)數(shù)的底數(shù).
(Ⅰ)若方程f(x)=1無(wú)實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍;
(Ⅱ)若函數(shù)f(x)在(0,+∞)內(nèi)為減函數(shù),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.n件產(chǎn)品中有m件正品,現(xiàn)從中先后任取2件(第一次取出的產(chǎn)品不放回),令“第一次取到正品”為A,“第二次取到正品”為B,則P(B|A)=$\frac{m-1}{n-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{3x-y-5≤0}\\{\;}\end{array}\right.$,則x2+y2的最小值為(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知?jiǎng)狱c(diǎn)P到點(diǎn)A(2,-1)、B(1,0)的距離之比為$\sqrt{2}$:1.
(1)求點(diǎn)P的軌跡方程C;
(2)過(guò)點(diǎn)Q(1,2)作直線l與曲線C相交與M、N兩點(diǎn),且|MN|=2$\sqrt{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.定義在R上的偶函數(shù),f(x)滿足:對(duì)任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,則當(dāng)n∈N*時(shí),f(-n),f(n-1),f(n+1)的大小關(guān)系為f(n-1)>f(-n)>f(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ln(x+1)+ax2-x(a>0).
(1)若a=$\frac{1}{2}$,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)討論函數(shù)y=f(x)的單調(diào)性;
(3)若存在x0∈[0,+∞),使f(x0)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對(duì)于任意的實(shí)數(shù)x,有f(x)=3x2-f(-x),當(dāng)x∈(-∞,0)時(shí),f′(x)+$\frac{1}{2}$<3x,若f(m+3)-f(-m)≤9m+$\frac{27}{2}$,則實(shí)數(shù)m的取值范圍是( 。
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案