1.將八進制數(shù)1001(8)轉化為六進制數(shù)為( 。
A.2121(6)B.2212(6)C.2213(6)D.3122(6)

分析 首先把8進制數(shù)字轉化成十進制數(shù)字,用所給的數(shù)字最后一個數(shù)乘以8的0次方,依次向前類推,相加得到十進制數(shù)字,再用這個數(shù)字除以6,倒序取余即得6進制數(shù).

解答 解:由于:1001(8)=1×83+0×82+0×81+1×80=513(10)
513÷6=85…3
85÷6=14…1
14÷6=2…2
2÷6=0…2
故:513(10)=2213(6)
故選:C.

點評 本題考查進位制之間的轉化,本題涉及到三個進位制之間的轉化,實際上不管是什么之間的轉化,原理都是相同的,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=x3+3x的單調遞增區(qū)間是R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)y=|x2-x-6|的增區(qū)間為(-2,$\frac{1}{2}$),(3,+∞),減區(qū)間為(-∞,-2),($\frac{1}{2}$,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設向量$\overrightarrow{a}$與$\overrightarrow$夾角為θ,定義$\overrightarrow{a}$與$\overrightarrow$的“向量積”:$\overrightarrow{a}$×$\overrightarrow$是一個向量,它的模|$\overrightarrow{a}$×$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|sinθ.若$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-1,$\sqrt{3}$),則|$\overrightarrow{a}$×$\overrightarrow$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知一組實數(shù)按順序排列為:$\frac{1}{2},\frac{2}{5},\frac{3}{10},\frac{4}{17},\frac{5}{26}…$,依此規(guī)律可歸納出第7個數(shù)為$\frac{7}{50}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知A(2,4),B(5,3),則$\overrightarrow{AB}$=(3,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若集合M={x|-1≤x<3},N={1,2,3},則M∩N等于( 。
A.{-1,0,1}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(Ⅰ)求不等式|x-3|-2|x-1|≥-1的解集;
(Ⅱ)已知a,b∈R*,a+b=1,求證:(a+$\frac{1}{a}$)2+(b+$\frac{1}$)2≥$\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線y=x+2平行,且它的焦點與橢圓$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{16}$=1的焦點重合,則雙曲線的方程為$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

同步練習冊答案