A. | $-\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
分析 由題意,tanθ=2,利用sin(2θ+$\frac{π}{2}}$)=cos2θ=$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$,可得結(jié)論.
解答 解:∵角θ的頂點與原點重合,始邊與x軸的非負半軸重合,終邊在直線y=2x上,
∴tanθ=2,
∴y=sin(2θ+$\frac{π}{2}}$)=cos2θ=$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$=-$\frac{3}{5}$.
故選:A.
點評 本題考查三角函數(shù)的定義,利用sin(2θ+$\frac{π}{2}}$)=cos2θ=$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | (-∞,1] | C. | ($\frac{1}{2}$,1) | D. | ($\frac{1}{2}$,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 19 | B. | 20 | C. | 21 | D. | 22 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com