16.已知正項等差數(shù)列{an}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比數(shù)列,則a10=( 。
A.19B.20C.21D.22

分析 由已知得a2=5,d>0,(7-d)(18+d)=100,求出公差,再根據(jù)通項公式即可求出.

解答 解:∵正項等差數(shù)列{an}中,a1+a2+a3=15,
∴a2=5,d>0,
∵a1+2,a2+5,a3+13構(gòu)成等比數(shù)列,
即7-d,10,18+d構(gòu)成等比數(shù)列,
依題意,有(7-d)(18+d)=100,
解得d=2或d=-13(舍),
∴a10=a2+(10-2)d=5+8×2=21,
故選:C.

點評 本題考查數(shù)列的通項公式的求法,解題時要認真審題,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知角θ的頂點與原點重合,始邊與x軸非負半軸重合,終邊在直線y=2x上,則y=sin(2θ+$\frac{π}{2}}$)的值為(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$-\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知a+b+c=0,求a($\frac{1}$+$\frac{1}{c}$)+b($\frac{1}{c}$+$\frac{1}{a}$)+c($\frac{1}{a}$+$\frac{1}$)+3的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.由1、2、3三個數(shù)字構(gòu)成的四位數(shù)有(  )
A.81個B.64個C.12個D.14個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,在正方形OABC內(nèi),陰影部分是由兩曲線y=$\sqrt{x}$,y=x2(0≤x≤1)圍成,在正方形內(nèi)隨機取一點,且此點取自陰影部分的概率是a,則函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x≥a)}\\{(\frac{1}{3})^{x}(x<a)}\end{array}\right.$的值域為[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知P1(x1,y1),P2(x2,y2)是以原點O為圓心的單位圓上的兩點,∠P1OP2=θ(θ為鈍角).若sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,則x1x2+y1y2的值為( 。
A.$\frac{\sqrt{2}}{6}$B.-$\frac{\sqrt{2}}{5}$C.-$\frac{\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.學業(yè)水平考試(滿分為100分)中,成績在[80,100]為A等,在[60,80)為B等,在[40,60)為C等,不到40分為D等.某校高二年級共有1200名學生,其中男生720名,女生480名,該校組織了一次物理學業(yè)水平模擬考試.為研究這次物理考試成績?yōu)锳等是否與性別有關(guān),現(xiàn)按性別采用分層抽樣抽取100名學生的成績,按從低到高分成[30,40),[40,50),[60,70),[70,80),[80,90),[90,100]七組,并繪制成如圖所示的頻率分布直方圖.
(1)估計該校高二年級學生在物理學業(yè)水平考試中,成績?yōu)镈等的人數(shù);
(2)請你根據(jù)已知條件將下列2×2列聯(lián)表補充完整,并判斷是否有90%的把握認為“該校高二年級學生在本次考試中物理成績?yōu)锳等與性別有關(guān)”?
物理成績?yōu)锳等物理成績不為A等合計
男生a=14b=46
女生c=6d=34
合計n=100
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
附:
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:
日期1月10日2月10日3月10日4月10日5月10日6月10日
晝夜溫差x(°C)1011131286
就診人數(shù)y(個)222529261612
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehaty$=bx+a;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:b=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某中學為了了解全校學生的上網(wǎng)情況,在全校采用隨機抽樣的方法抽取了40名學生(其中男女生人數(shù)恰好各占一半)進行問卷調(diào)查,并進行了統(tǒng)計,按男女分為兩組,再將每組學生的月上網(wǎng)次數(shù)分為5組:[0,5),[5,10),[10,15),[15,20),[20,25],得到如圖所示的頻率分布直方圖:

( I)寫出a的值;
( II)在抽取的40名學生中,從月上網(wǎng)次數(shù)不少于20次的學生中隨機抽取3人,并用X表示其中男生的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案