分析 (1)由余弦定理可知cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{2}}{2}$,則A=$\frac{π}{4}$;
(2)根據(jù)正弦定理b2+c2=2a2,代入b2+c2-a2=$\sqrt{2}$bc,求得a2=$\sqrt{2}$bc,由三角形面積公式S=$\frac{1}{2}$bcsinA,即可求得△ABC的面積.
解答 解:(1)由題意可知b2+c2-a2=$\sqrt{2}$bc,
由余弦定理可知:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{2}bc}{2bc}$=$\frac{\sqrt{2}}{2}$,
∴A=$\frac{π}{4}$,
(2)由正弦定理可知:$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=2R,
由sin2B+sin2C=2sin2A,
∴b2+c2=2a2,
由(1)可知:a2=$\sqrt{2}$bc,
∴bc=$\frac{9\sqrt{2}}{2}$,
△ABC的面積S,S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×$\frac{9\sqrt{2}}{2}$×$\frac{\sqrt{2}}{2}$=$\frac{9}{4}$.
∴△ABC的面積$\frac{9}{4}$.
點(diǎn)評(píng) 本題考查正弦定理及余弦定理的應(yīng)用,考查三角形面積公式,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60° | B. | 30° | C. | 135° | D. | 45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com