分析 求導函數(shù),分別求出函數(shù)f(x)的最小值,g(x)的最小值,進而可建立不等關系,即可求出a的取值范圍.
解答 解:求導函數(shù),可得g′(x)=1-$\frac{2}{x}$,x∈[1,2],g′(x)<0,x∈(2,e],g′(x)>0,
∴g(x)min=g(2)=2-2ln2,
令f'(x)=0,∵0<a<1,x=±$\sqrt{a}$,
當0<a≤1,f(x)在[1,e]上單調(diào)增,
∴f(x)min=f(1)=a≥2-2ln2,
∴2-2ln2≤a≤1,
故答案為[2-2ln2,1].
點評 本題考查導數(shù)知識的運用,考查函數(shù)的最值,解題的關鍵是將對任意的x1∈[1,e],存在x2∈[1,e]都有f(x1)≥g(x2)成立,轉化為對任意的x1,x2∈[1,e],都有f(x)min≥g(x)min.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{13}$ | B. | $\frac{9}{19}$ | C. | $\frac{11}{23}$ | D. | $\frac{9}{23}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{4}$ | B. | $\frac{\sqrt{7}}{5}$ | C. | $\frac{\sqrt{7}}{4}$ | D. | $\frac{\sqrt{10}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x-2)2+(y-1)2=1 | B. | (x+2)2+(y-1)2=1 | C. | (x-2)2+(y+1)2=1 | D. | (x-1)2+(y+2)2=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | -1或0 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | S10 | B. | S9 | C. | S8 | D. | S7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com