分析 利用數(shù)學(xué)歸納法證明:(1)當(dāng)n=2時,證明不等式成立;(2)假設(shè)n=k(k≥2,k∈N*)時命題成立,用上歸納假設(shè),去證明則當(dāng)n=k+1時,不等式也成立即可.
解答 證明:(1)當(dāng)n=2時,∵x≠0,∴(1+x)2=1+2x+x2>1+2x,不等式成立;
(2)假設(shè)n=k(k≥2)時,不等式成立,即(1+x)k>1+kx
當(dāng)n=k+1時,左邊=(1+x)k+1=(1+x)k(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,
∴當(dāng)n=k+1時,不等式成立
由(1)(2)可知,不等式成立.
點評 本題考查數(shù)學(xué)歸納法,解題時要認(rèn)真審題,仔細(xì) 解答,注意放縮法的合理運用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 20 | C. | 25 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
人數(shù) 課程 | 課程一 | 課程二 | 課程三 | 課程四 | 課程五 |
50 | + | + | - | + | - |
80 | + | + | - | - | - |
125 | + | - | + | - | + |
150 | - | + | + | + | - |
94 | + | - | - | + | + |
76 | - | - | + | + | - |
25 | - | - | + | - | + |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,2) | B. | ($\frac{1}{3}$,3) | C. | [1,3] | D. | [$\frac{1}{4}$,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com